1
|
Wei H, Ma Y, Ding C, Jin G, Liu J, Chang Q, Hu F, Yu L. Reduced Glutamate Release in Adult BTBR Mouse Model of Autism Spectrum Disorder. Neurochem Res 2016; 41:3129-3137. [PMID: 27538958 DOI: 10.1007/s11064-016-2035-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/02/2016] [Accepted: 08/12/2016] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by impairments in social and communication abilities, as well as by restricted and repetitive behaviors. The BTBR T + Itpr3 tf (BTBR) mice have emerged as a well characterized and widely used mouse model of a range of ASD-like phenotype, showing deficiencies in social behaviors and unusual ultrasonic vocalizations as well as increased repetitive self-grooming. However, the inherited neurobiological changes that lead to ASD-like behaviors in these mice are incompletely known and still under active investigation. The aim of this study was to further evaluate the structure and neurotransmitter release of the glutamatergic synapse in BTBR mice. C57BL/6J (B6) mice were used as a control strain because of their high level of sociability. The important results showed that the evoked glutamate release in the cerebral cortex of BTBR mice was significantly lower than in B6 mice. And the level of vesicle docking-related protein Syntaxin-1A was reduced in BTBR mice. However, no significant changes were observed in the number of glutamatergic synapse, level of synaptic proteins, density of dendritic spine and postsynaptic density between BTBR mice and B6 mice. Overall, our results suggest that abnormal vesicular glutamate activity may underlie the ASD relevant pathology in the BTBR mice.
Collapse
Affiliation(s)
- Hongen Wei
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, 29 Shuangta Road, Taiyuan, 030012, China.
| | - Yuehong Ma
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Caiyun Ding
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Guorong Jin
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Jianrong Liu
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Qiaoqiao Chang
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, 29 Shuangta Road, Taiyuan, 030012, China
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Li Yu
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, 29 Shuangta Road, Taiyuan, 030012, China
| |
Collapse
|
2
|
Wei H, Ma Y, Liu J, Ding C, Jin G, Wang Y, Hu F, Yu L. Inhibition of IL-6 trans-signaling in the brain increases sociability in the BTBR mouse model of autism. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1918-25. [PMID: 27460706 DOI: 10.1016/j.bbadis.2016.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/29/2016] [Accepted: 07/22/2016] [Indexed: 01/14/2023]
Abstract
Autism is a severe neurodevelopmental disorder with a large population prevalence, characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. The BTBR T(+)Itpr3(tf) (BTBR) mice have emerged as strong candidates to serve as models of a range of autism-relevant behaviors. Increasing evidences suggest that interleukin (IL)-6, one of the most important neuroimmune factors, was involved in the pathophysiology of autism. It is of great importance to further investigate whether therapeutic interventions in autism can be achieved through the manipulation of IL-6. Our previous studies showed that IL-6 elevation in the brain could mediate autistic-like behaviors, possibly through the imbalances of neural circuitry and impairments of synaptic plasticity. In this study, we evaluate whether inhibiting IL-6 signaling in the brain is sufficient to modulate the autism-like behaviors on the BTBR mice. The results showed that chronic infusion of an analog of the endogenous IL-6 trans-signaling blocker sgp130Fc protein increased the sociability in BTBR mice. Furthermore, no change was observed in the number of excitatory synapse, level of synaptic proteins, density of dentitic spine and postsynaptic density in BTBR cortices after inhibiting IL-6 trans-signaling. However, inhibition of IL-6 trans-signaling increased the evoked glutamate release in synaptoneurosomes from the cerebral cortex of BTBR mice. Our findings suggest that inhibition of excessive production of IL-6 may have selective therapeutic efficacy in treating abnormal social behaviors in autism.
Collapse
Affiliation(s)
- Hongen Wei
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China.
| | - Yuehong Ma
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Jianrong Liu
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Caiyun Ding
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Guorong Jin
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Yi Wang
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Li Yu
- Department of Rehabilitation Medicine, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Wolf M, Zimmermann AM, Görlich A, Gurniak CB, Sassoè-Pognetto M, Friauf E, Witke W, Rust MB. ADF/Cofilin Controls Synaptic Actin Dynamics and Regulates Synaptic Vesicle Mobilization and Exocytosis. Cereb Cortex 2014; 25:2863-75. [PMID: 24770705 DOI: 10.1093/cercor/bhu081] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Actin is a regulator of synaptic vesicle mobilization and exocytosis, but little is known about the mechanisms that regulate actin at presynaptic terminals. Genetic data on LIMK1, a negative regulator of actin-depolymerizing proteins of the ADF/cofilin family, suggest a role for ADF/cofilin in presynaptic function. However, synapse physiology is fully preserved upon genetic ablation of ADF in mice, and n-cofilin mutant mice display defects in postsynaptic plasticity, but not in presynaptic function. One explanation for this phenomenon is overlapping functions of ADF and n-cofilin in presynaptic physiology. Here, we tested this hypothesis and genetically removed ADF together with n-cofilin from synapses. In double mutants for ADF and n-cofilin, synaptic actin dynamics was impaired and more severely affected than in single mutants. The resulting cytoskeletal defects heavily affected the organization, mobilization, and exocytosis of synaptic vesicles in hippocampal CA3-CA1 synapses. Our data for the first time identify overlapping functions for ADF and n-cofilin in presynaptic physiology and vesicle trafficking. We conclude that n-cofilin is a limiting factor in postsynaptic plasticity, a function which cannot be substituted by ADF. On the presynaptic side, the presence of either ADF or n-cofilin is sufficient to control actin remodeling during vesicle release.
Collapse
Affiliation(s)
- Michael Wolf
- Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Anika-Maria Zimmermann
- Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Andreas Görlich
- Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany Current address: Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | - Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology and Forensic Medicine and National Institute of Neuroscience-Italy, University of Turin, Turin 10126, Italy
| | - Eckhard Friauf
- Animal Physiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Bonn 53115, Germany
| | - Marco B Rust
- Department of Biology, Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern 67663, Germany Institute of Physiological Chemistry, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
4
|
Morales-Villagrán A, Sandoval-Salazar C, Medina-Ceja L. An Analytical Flow Injection System to Measure Glutamate in Microdialysis Samples Based on an Enzymatic Reaction and Electrochemical Detection. Neurochem Res 2008; 33:1592-8. [DOI: 10.1007/s11064-008-9704-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/03/2008] [Indexed: 11/28/2022]
|
5
|
Schenning M, Proctor DT, Ragnarsson L, Barbier J, Lavidis NA, Molgó JJ, Zamponi GW, Schiavo G, Meunier FA. Glycerotoxin stimulates neurotransmitter release from N-type Ca2+ channel expressing neurons. J Neurochem 2006; 98:894-904. [PMID: 16749905 DOI: 10.1111/j.1471-4159.2006.03938.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycerotoxin (GLTx) is capable of stimulating neurotransmitter release at the frog neuromuscular junction by directly interacting with N-type Ca2+ (Cav2.2) channels. Here we have utilized GLTx as a tool to investigate the functionality of Cav2.2 channels in various mammalian neuronal preparations. We first adapted a fluorescent-based high-throughput assay to monitor glutamate release from rat cortical synaptosomes. GLTx potently stimulates glutamate secretion and Ca2+ influx in synaptosomes with an EC50 of 50 pm. Both these effects were prevented using selective Cav2.2 channel blockers suggesting the functional involvement of Cav2.2 channels in mediating glutamate release in this system. We further show that both Cav2.1 (P/Q-type) and Cav2.2 channels contribute equally to depolarization-induced glutamate release. We then investigated the functionality of Cav2.2 channels at the neonatal rat neuromuscular junction. GLTx enhances both spontaneous and evoked neurotransmitter release causing a significant increase in the frequency of postsynaptic action potentials. These effects were blocked by specific Cav2.2 channel blockers demonstrating that either GLTx or its derivatives could be used to selectively enhance the neurotransmitter release from Cav2.2-expressing mammalian neurons.
Collapse
Affiliation(s)
- Mitja Schenning
- Molecular Dynamics of Synaptic Function Laboratory, The School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|