1
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
2
|
Hammond N, Munkacsi AB, Sturley SL. The complexity of a monogenic neurodegenerative disease: More than two decades of therapeutic driven research into Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1109-1123. [PMID: 31002946 DOI: 10.1016/j.bbalip.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/17/2022]
Abstract
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.
Collapse
Affiliation(s)
- Natalie Hammond
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Stephen L Sturley
- Department of Biology, Barnard College-Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
3
|
Niemir N, Rouvière L, Besse A, Vanier MT, Dmytrus J, Marais T, Astord S, Puech JP, Panasyuk G, Cooper JD, Barkats M, Caillaud C. Intravenous administration of scAAV9-Hexb normalizes lifespan and prevents pathology in Sandhoff disease mice. Hum Mol Genet 2019; 27:954-968. [PMID: 29325092 DOI: 10.1093/hmg/ddy012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022] Open
Abstract
Sandhoff disease (SD) is a rare inherited disorder caused by a deficiency of β-hexosaminidase activity which is fatal because no effective treatment is available. A mouse model of Hexb deficiency reproduces the key pathognomonic features of SD patients with severe ubiquitous lysosomal dysfunction, GM2 accumulation, neuroinflammation and neurodegeneration, culminating in death at 4 months. Here, we show that a single intravenous neonatal administration of a self-complementary adeno-associated virus 9 vector (scAAV9) expressing the Hexb cDNA in SD mice is safe and sufficient to prevent disease development. Importantly, we demonstrate for the first time that this treatment results in a normal lifespan (over 700 days) and normalizes motor function assessed by a battery of behavioral tests, with scAAV9-treated SD mice being indistinguishable from wild-type littermates. Biochemical analyses in multiple tissues showed a significant increase in hexosaminidase A activity, which reached 10-15% of normal levels. AAV9 treatment was sufficient to prevent GM2 and GA2 storage almost completely in the cerebrum (less so in the cerebellum), as well as thalamic reactive gliosis and thalamocortical neuron loss in treated Hexb-/- mice. In summary, this study demonstrated a widespread protective effect throughout the entire CNS after a single intravenous administration of the scAAV9-Hexb vector to neonatal SD mice.
Collapse
Affiliation(s)
- Natalia Niemir
- INSERM U1151, Institut Necker Enfants Malades, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laura Rouvière
- INSERM U1151, Institut Necker Enfants Malades, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Aurore Besse
- Centre of Research in Myology, Institut de Myologie, Sorbonne Universités, UPMC University Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Marie T Vanier
- INSERM U820, Université de Lyon, Faculté de Médecine Lyon-Est, Lyon 69372, France
| | - Jasmin Dmytrus
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Thibaut Marais
- Centre of Research in Myology, Institut de Myologie, Sorbonne Universités, UPMC University Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Stéphanie Astord
- Centre of Research in Myology, Institut de Myologie, Sorbonne Universités, UPMC University Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Jean-Philippe Puech
- Service de Biochimie, Métabolomique et Protéomique, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Ganna Panasyuk
- INSERM U1151, Institut Necker Enfants Malades, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jonathan D Cooper
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK.,Department of Pediatrics, Los Angeles Biomedical Research Institute, David Geffen School of Medicine, UCLA, Torrance, CA 90502, USA
| | - Martine Barkats
- Centre of Research in Myology, Institut de Myologie, Sorbonne Universités, UPMC University Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Catherine Caillaud
- INSERM U1151, Institut Necker Enfants Malades, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service de Biochimie, Métabolomique et Protéomique, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| |
Collapse
|
4
|
Aberrant activation of Cdc2/cyclin B1 is involved in initiation of cytoskeletal pathology in murine Niemann-Pick disease type C. Curr Med Sci 2017; 37:732-739. [PMID: 29058287 DOI: 10.1007/s11596-017-1796-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Niemann-Pick disease type C (NPC) is a fatal, neurovisceral lipid storage disease, neuropathologically characterized by cytoplasmic sequestration of glycolipids in neurons, progressive neuronal loss, neurofibrillary tangles (NFTs) formation, and axonal spheroids (AS). Cytoskeletal pathology including accumulation of hyperphosphorylated cytoskeletal proteins is a neuropathological hallmark of the mouse model of NPC (npc mice). With a goal of elucidating the mechanisms underlying the lesion formation, we investigated the temporal and spatial characteristics of cytoskeletal lesions and the roles of cdc2, cdk4, and cdk5 in lesion formation in young npc mice. Cytoskeletal lesions were detectable in npc mice at three weeks of age. Importantly, concomitant activation of cdc2/cyclin B1 kinase and accumulation of a subsequently generated cohort of phospho-epitopes were detected. The activation of cdk4/cyclin D1 and cdk5/p25 kinases was observed during the fourth week of life in npc mice, and this activation contributed to the lesion formation. We concluded that the progression of cytoskeletal pathology in npc mice older than four weeks is accelerated by the cumulative effect of cdc2, cdk4, and cdk5 activation. Furthermore, cdc2/cyclin B1 may act as a key initial player one week earlier. Targeting cell cycle activation may be beneficial to slow down the NPC pathogenesis.
Collapse
|
5
|
Saher G, Stumpf SK. Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1083-94. [PMID: 25724171 DOI: 10.1016/j.bbalip.2015.02.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Gesine Saher
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Sina Kristin Stumpf
- Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
6
|
Inhibiting ACAT1/SOAT1 in microglia stimulates autophagy-mediated lysosomal proteolysis and increases Aβ1-42 clearance. J Neurosci 2015; 34:14484-501. [PMID: 25339759 DOI: 10.1523/jneurosci.2567-14.2014] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a resident endoplasmic reticulum enzyme that prevents the buildup of cholesterol in membranes by converting it to cholesterol esters. Blocking ACAT1 pharmacologically or by Acat1 gene knock-out (KO) decreases amyloidopathy in mouse models for Alzheimer's disease. However, the beneficial actions of ACAT1 blockage to treat Alzheimer's disease remained not well understood. Microglia play essential roles in the proteolytic clearance of amyloid β (Aβ) peptides. Here we show that Acat1 gene KO in mouse increases phagocytic uptake of oligomeric Aβ1-42 and stimulates lysosomal Aβ1-42 degradation in cultured microglia and in vivo. Additional results show that Acat1 gene KO or a specific ACAT1 inhibitor K604 stimulates autophagosome formation and transcription factor EB-mediated lysosomal proteolysis. Surprisingly, the effect of ACAT1 blockage does not alter mTOR signaling or endoplasmic reticulum stress response but can be modulated by agents that disrupt cholesterol biosynthesis. To our knowledge, our current study provides the first example that a small molecule (K604) can promote autophagy in an mTOR-independent manner to activate the coordinated lysosomal expression and regulation network. Autophagy is needed to degrade misfolded proteins/peptides. Our results implicate that blocking ACAT1 may provide a new way to benefit multiple neurodegenerative diseases.
Collapse
|
7
|
Helquist P, Maxfield FR, Wiech NL, Wiest O. Treatment of Niemann--pick type C disease by histone deacetylase inhibitors. Neurotherapeutics 2013; 10:688-97. [PMID: 24048860 PMCID: PMC3805865 DOI: 10.1007/s13311-013-0217-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Niemann-Pick type C disease (NPC) is a devastating, recessive, inherited disorder that causes accumulation of cholesterol and other lipids in late endosomes and lysosomes. Mutations in 2 genes, NPC1 and NPC2, are responsible for the disease, which affects about 1 in 120,000 live births. About 95% of patients have mutations in NPC1, a large polytopic membrane protein that is normally found in late endosomes. More than 200 missense mutations in NPC1 have been found in NPC patients. The disease is progressive, typically leading to death before the age of 20 years, although some affected individuals live well into adulthood. The disease affects peripheral organs, including the liver, spleen, and lungs, but the most severe symptoms are associated with neurological disease. There are some palliative treatments that slow progression of NPC disease. Recently, it was found that histone deacetylase (HDAC) inhibitors that are effective against HDACs 1, 2, and 3 can reduce the cholesterol accumulation in fibroblasts derived from NPC patients with mutations in NPC1. One example is vorinostat. As vorinostat is a Food and Drug Administration-approved drug for treatment of cutaneous T-cell lymphoma, this opens up the possibility that HDAC inhibitors could be repurposed for treatment of this rare disease. The mechanism of action of the HDAC inhibitors requires further study, but these drugs increase the level of the NPC1 protein. This may be due to post-translational stabilization of the NPC1 protein, allowing it to be transported out of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Helquist
- />Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670 USA
| | | | | | - Olaf Wiest
- />Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670 USA
- />Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
8
|
Valdez CM, Phelix CF, Smith MA, Perry G, Santamaria F. Modeling cholesterol metabolism by gene expression profiling in the hippocampus. MOLECULAR BIOSYSTEMS 2011; 7:1891-901. [PMID: 21451815 DOI: 10.1039/c0mb00282h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An important part of the challenge of building models of biochemical reactions is determining reaction rate constants that transform substrates into products. We present a method to derive enzymatic kinetic values from mRNA expression levels for modeling biological networks without requiring further tuning. The core metabolic reactions of cholesterol in the brain, particularly in the hippocampus, were simulated. To build the model the baseline mRNA expression levels of genes involved in cholesterol metabolism were obtained from the Allen Mouse Brain Atlas. The model is capable of replicating the trends of relative cholesterol levels in Alzheimer's and Huntington's diseases; and reliably simulated SLOS, desmosterolosis, and Dhcr14/Lbr knockout studies. A sensitivity analysis correctly uncovers the Hmgcr, Idi2 and Fdft1 sites that regulate cholesterol homeostasis. Overall, our model and methodology can be used to pinpoint key reactions, which, upon manipulation, may predict altered cholesterol levels and reveal insights into potential drug therapy targets under diseased conditions.
Collapse
Affiliation(s)
- Christopher M Valdez
- Biology Department, The University of Texas at San Antonio, One UTSA circle, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
9
|
Rujoi M, Pipalia NH, Maxfield FR. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells. PLoS One 2010; 5:e12788. [PMID: 20877719 PMCID: PMC2943465 DOI: 10.1371/journal.pone.0012788] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/23/2010] [Indexed: 02/04/2023] Open
Abstract
Background Niemann-Pick type C (NPC) disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles. Methodology/Principal Findings The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds. Conclusions/Significance Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155–1165).
Collapse
Affiliation(s)
- Madalina Rujoi
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Nina H. Pipalia
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
|
11
|
Madra M, Sturley SL. Niemann-Pick type C pathogenesis and treatment: from statins to sugars. CLINICAL LIPIDOLOGY 2010; 5:387-395. [PMID: 21394236 PMCID: PMC3050622 DOI: 10.2217/clp.10.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The isolation of the causative genes for Niemann-Pick type C disease, a panethnic lysosomal lipid storage disorder, has provided models of how sterols and other lipids such as glycosphingolipids traverse the membranes of eukaryotic cells. Unfortunately, these molecular advances have yet to reciprocate with a cure for this devastating neurodegenerative disorder where neuronal replenishment will most likely yield the greatest benefit. In the meantime, stabilizing treatment strategies based on the removal of presumably toxic metabolites are in place. For example, the small molecule inhibition of glucosylceramide synthase by miglustat limits ganglioside accumulation and is now the only approved treatment of Niemann-Pick type C. In addition, 2-hydroxypropyl-B-cyclodextrin, a lipid chelator, relieves the lysosomal to endoplasmic reticulum blockage and markedly increases the life expectancy of the murine model. Ultimately, these strategies, targeting the primary biochemical lesion in these cells, and others will likely be combined to provide a synergistic cocktail approach to treating this disease.
Collapse
Affiliation(s)
- Moneek Madra
- Department of Pediatrics, Columbia University Medical Center, 630 West 168th St, NY 10032, USA
| | - Stephen L Sturley
- Department of Pediatrics, Columbia University Medical Center, 630 West 168th St, NY 10032, USA
| |
Collapse
|
12
|
Peake KB, Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett 2010; 584:2731-9. [PMID: 20416299 DOI: 10.1016/j.febslet.2010.04.047] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/29/2022]
Abstract
Pathways of intracellular cholesterol trafficking are poorly understood at the molecular level. Mutations in Niemann-Pick C (NPC) proteins, NPC1 and NPC2, however, have led to insights into the mechanism by which endocytosed cholesterol is exported from late endosomes/lysosomes (LE/L). Mutations in NPC1, a multi-spanning membrane protein of LE/L, or mutations in NPC2, a soluble luminal protein of LE/L, cause the neurodegenerative disorder NPC disease. This review focuses on data supporting a model in which movement of cholesterol out of LE/L is mediated by the sequential action of the two NPC proteins. We also discuss potential therapies for NPC disease, including evidence that treatment of NPC-deficient mice with the cholesterol-binding compound, cyclodextrin, markedly attenuates neurodegeneration, and increases life-span, of NPC1-deficient mice.
Collapse
Affiliation(s)
- Kyle B Peake
- Group on the Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
13
|
Abnormal gene expression in cerebellum of Npc1-/- mice during postnatal development. Brain Res 2010; 1325:128-40. [PMID: 20153740 DOI: 10.1016/j.brainres.2010.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/31/2010] [Accepted: 02/04/2010] [Indexed: 11/21/2022]
Abstract
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder with abnormal lipid storage as the major cellular pathologic hallmark. Genetic analyses have identified mutations in NPC1 gene in the great majority of cases, while mutations in NPC2 account for the remainders. Yet little is known regarding the cellular mechanisms responsible for NPC pathogenesis, especially for neurodegeneration, which is the usual cause of death. To identify critical steps that could account for the pathological manifestations of the disease in one of the most affected brain structures, we performed global gene expression analysis in the cerebellum from 3-week old Npc1+/+ and Npc1-/- mice with two different microarray platforms (Agilent and Illumina). Differentially expressed genes identified by both microarray platforms were then subjected to KEGG pathway analysis. Expression of genes in six pathways was significantly altered in Npc1-/- mice; functionally, these signaling pathways belong to the following three categories: (1) steroid and terpenoid biosynthesis, (2) immune response, and (3) cell adhesion/motility. In addition, the expression of several proteins involved in lipid transport was significantly altered in Npc1-/- mice. Our results provide novel molecular insight regarding the mechanisms of pathogenesis in NPC disease and reveal potential new therapeutic targets.
Collapse
|
14
|
Abstract
Niemann-Pick Type C (NPC) disease is associated with accumulation of cholesterol and other lipids in late endosomes/lysosomes in virtually every organ; however, neurodegeneration represents the fatal cause for the disease. Genetic analysis has identified loss-of-function mutations in NPC1 and NPC2 genes as the molecular triggers for the disease. Although the precise function of these proteins has not yet been clarified, recent research suggests that they orchestrate cholesterol efflux from late endosomes/lysosomes. NPC protein deficits result in impairment in intracellular cholesterol trafficking and dysregulation of cholesterol biosynthesis. Disruption of cholesterol homeostasis is also associated with deregulation of autophagic activity and early-onset neuroinflammation, which may contribute to the pathogenesis of NPC disease. This chapter reviews recent achievements in the investigation of disruption of cholesterol homeostasis-induced neurodegeneration in NPC disease, and provides new insight for developing a potential therapeutic strategy for this disorder.
Collapse
Affiliation(s)
- Xiaoning Bi
- Department of Basic Medical Sciences, COMP, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
15
|
Ohno-Iwashita Y, Shimada Y, Hayashi M, Iwamoto M, Iwashita S, Inomata M. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell Biochem 2010; 51:597-621. [PMID: 20213560 DOI: 10.1007/978-90-481-8622-8_22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cholesterol is one of the major constituents of mammalian cell membranes. It plays an indispensable role in regulating the structure and function of cell membranes and affects the pathology of various diseases. In recent decades much attention has been paid to the existence of membrane microdomains, generally termed lipid "rafts", and cholesterol, along with sphingolipids, is thought to play a critical role in raft structural organization and function. Cholesterol-binding probes are likely to provide useful tools for analyzing the distribution and dynamics of membrane cholesterol, as a structural element of raft microdomains, and elsewhere within the cell. Among the probes, non-toxic derivatives of perfringolysin O, a cholesterol-binding cytolysin, bind cholesterol in a concentration-dependent fashion with a strict threshold. They selectively recognize cholesterol in cholesterol-enriched membranes, and have been used in many studies to detect microdomains in plasma and intracellular membranes. Anti-cholesterol antibodies that recognize cholesterol in domain structures have been developed in recent years. In this chapter, we describe the characteristics of these cholesterol-binding proteins and their applications to studies on membrane cholesterol localization.
Collapse
Affiliation(s)
- Yoshiko Ohno-Iwashita
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki City, Fukushima, 970-8551, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Karten B, Peake KB, Vance JE. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:659-70. [PMID: 19416638 DOI: 10.1016/j.bbalip.2009.01.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 01/20/2009] [Indexed: 11/18/2022]
Abstract
Niemann-Pick C disease is a fatal progressive neurodegenerative disorder caused in 95% of cases by mutations in the NPC1 gene; the remaining 5% of cases result from mutations in the NPC2 gene. The major biochemical manifestation of NPC1 deficiency is an abnormal sequestration of lipids, including cholesterol and glycosphingolipids, in late endosomes/lysosomes (LE/L) of all cells. In this review, we summarize the current knowledge of the NPC1 protein in mammalian cells with particular focus on how defects in NPC1 alter lipid trafficking and neuronal functions. NPC1 is a protein of LE/L and is predicted to contain thirteen transmembrane domains, five of which constitute a sterol-sensing domain. The precise function of NPC1, and the mechanism by which NPC1 and NPC2 (both cholesterol binding proteins) act together to promote the movement of cholesterol and other lipids out of the LE/L, have not yet been established. Recent evidence suggests that the sequestration of cholesterol in LE/L of cells of the brain (neurons and glial cells) contributes to the widespread death and dysfunction of neurons in the brain. Potential therapies include treatments that promote the removal of cholesterol and glycosphingolipids from LE/L. Currently, the most promising approach for extending life-span and improving the quality of life for NPC patients is a combination of several treatments each of which individually modestly slows disease progression.
Collapse
Affiliation(s)
- Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|