1
|
Song SY, Zhai XM, Dai JH, Lu LL, Shan CJ, Hong J, Cao JL, Zhang LC. The CSF-Contacting Nucleus Receives Anatomical Inputs From the Cerebral Cortex: A Combination of Retrograde Tracing and 3D Reconstruction Study in Rat. Front Neuroanat 2020; 14:600555. [PMID: 33328908 PMCID: PMC7714914 DOI: 10.3389/fnana.2020.600555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to investigate the direct monosynaptic projections from cortical functional regions to the cerebrospinal fluid (CSF)-contacting nucleus for understanding the functions of the CSF-contacting nucleus. Methods The Sprague-Dawley rats received cholera toxin B subunit (CB) injections into the CSF-contacting nucleus. After 7-10 days of survival time, the rats were perfused, and the whole brain and spinal cord were sliced under a freezing microtome at 40 μm. All sections were treated with the CB immunofluorescence reaction. The retrogradely labeled neurons in different cortical areas were revealed under a confocal microscope. The distribution features were further illustrated under 3D reconstruction. Results The retrogradely labeled neurons were identified in the olfactory, orbital, cingulate, insula, retrosplenial, somatosensory, motor, visual, auditory, association, rhinal, and parietal cortical areas. A total of 12 functional areas and 34 functional subregions showed projections to the CSF-contacting nucleus in different cell intensities. Conclusion According to the connectivity patterns, we conclude that the CSF-contacting nucleus participates in cognition, emotion, pain, visceral activity, etc. The present study firstly reveals the cerebral cortex→CSF-contacting nucleus connections, which implies the multiple functions of this special nucleus in neural and body fluid regulations.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Hao Dai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lei-Lei Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Song SY, Zhai XM, Shan CJ, Lu LL, Hong J, Cao JL, Zhang LC. A Special Cranial Nucleus (CSF-Contacting Nucleus) in Primates. Front Neuroanat 2020; 14:53. [PMID: 32903455 PMCID: PMC7436842 DOI: 10.3389/fnana.2020.00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is a unique nucleus (CSF-contacting nucleus) in the brain of rat. It has been demonstrated in our previous research. The extraordinary feature of this nucleus is that it is not connected to any parenchymal organ but to the CSF. In primates, however, the presence or absence of this nucleus has not been proven. Confirmation of the presence of this nucleus in primates will provide the structural basis for brain-CSF communication and help to understand the neurohumoral regulatory mechanisms in humans. METHODS The tracer cholera toxin B subunit conjugated to horseradish peroxidase (CB-HRP) was injected into the CSF in the lateral ventricle (LV) of primate rhesus monkeys. After 48 h, the monkeys were perfused and the brain was dissected out, and sectioned for CB-HRP staining. The CB-HRP positive structures were observed under confocal and electron microscopy. The three-dimensional (3D) structure of the CB-HRP positive neurons cluster was reconstructed by computer software. RESULTS (1) CB-HRP labeling is confined within the ventricle, but not leakage into the brain parenchyma. (2) From the midbrain inferior colliculus superior border plane ventral to the aqueduct to the upper part of the fourth ventricle (4V) floor, a large number of CB-HRP positive neurons are consistently located, form a cluster, and are symmetrically located on both sides of the midline. (3) 3D reconstruction shows that the CB-HRP positive neurons cluster in the monkey brain occupies certain space. The rostral part is large and caudal part is thin appearing a "rivet"-like shape. (4) Under electron microscopy, the CB-HRP positive neurons show different types of synaptic connections with the non-CSF-contacting structures in the brain. Some of the processes stretch directly into the ventricle cavity. CONCLUSION Same as we did in rats, the CSF-contacting nucleus is also existed in the primate brain parenchyma. We also recommend listing it as the XIII pair of cranial nucleus, which is specialized in the communications between the brain and the CSF. It is significant to the completing of innervation in the organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
He YQ, Shi XX, Chen L, Zhao WB, Shan J, Lin ZL, Yang LL, Li Q. Cerebrospinal fluid-contacting neurons affect the expression of endogenous neural progenitor cells and the recovery of neural function after spinal cord injury. Int J Neurosci 2020; 131:615-624. [PMID: 32363983 DOI: 10.1080/00207454.2020.1750396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the relationship between cerebrospinal fluid-contacting neurons (CSF-cNs) and endogenous neural progenitor cells (ENPCs) and whether CSF-cNs are involved in nerve repair after spinal cord injury (SCI). METHODS Cholera toxin B-horseradish peroxidase complex (CB-HRP) and cholera toxin B conjugated with saporin (CB-SAP) were injected into the lateral ventricles of spinal cord injured rats to mark and destroy the CSF-cNs. Then the rats in the experimental group were injured by SCI. Observe the content and co-expression of CSF-cNs and ENPCs in rats of each group, and observe the recovery of motor function after SCI in each group. RESULTS After the destruction of CSF-cNs, the number of ENPCs decreased significantly in the long term after the surgery, and the recovery of motor function also deteriorated as compared to the group with intact CSF-cNs. Meanwhile some cells in the spinal cord express both the biological marker of CSF-cNs and ENPCs. CONCLUSION This study shows that the population of ENPCs and motor function recovery in SCI rats declined after the destruction of CSF-cNs, suggesting that CSF-cNs affect the ENPCs population and may be involved in the recovery of neural function after SCI.
Collapse
Affiliation(s)
- Yu-Qi He
- School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China.,Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Xue-Xing Shi
- Department of Orthopedics, Affiliated Baiyun Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Li Chen
- Department of Orthopedics, Dazhou Central Hospital, Dazhou, P.R. China
| | - Wen-Bo Zhao
- Department of first Orthopedics, Fifth Affiliated (zhuhai) Hospital, Zunyi Medical University, Zhuhai, P.R. China
| | - Jing Shan
- Department of Orthopedics, First Affiliated Hospital, Nanchang University, Nanchang, P.R. China
| | - Zong-Long Lin
- School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China.,Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Lei-Luo Yang
- Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Qing Li
- Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
4
|
Song SY, Li Y, Zhai XM, Li YH, Bao CY, Shan CJ, Hong J, Cao JL, Zhang LC. Connection Input Mapping and 3D Reconstruction of the Brainstem and Spinal Cord Projections to the CSF-Contacting Nucleus. Front Neural Circuits 2020; 14:11. [PMID: 32296310 PMCID: PMC7136615 DOI: 10.3389/fncir.2020.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 01/04/2023] Open
Abstract
Objective To investigate whether the CSF-contacting nucleus receives brainstem and spinal cord projections and to understand the functional significance of these connections. Methods The retrograde tracer cholera toxin B subunit (CB) was injected into the CSF-contacting nucleus in Sprague-Dawley rats according the previously reported stereotaxic coordinates. After 7–10 days, these rats were perfused and their brainstem and spinal cord were sliced (thickness, 40 μm) using a freezing microtome. All the sections were subjected to CB immunofluorescence staining. The distribution of CB-positive neuron in different brainstem and spinal cord areas was observed under fluorescence microscope. Results The retrograde labeled CB-positive neurons were found in the midbrain, pons, medulla oblongata, and spinal cord. Four functional areas including one hundred and twelve sub-regions have projections to the CSF-contacting nucleus. However, the density of CB-positive neuron distribution ranged from sparse to dense. Conclusion Based on the connectivity patterns of the CSF-contacting nucleus receives anatomical inputs from the brainstem and spinal cord, we preliminarily conclude and summarize that the CSF-contacting nucleus participates in pain, visceral activity, sleep and arousal, emotion, and drug addiction. The present study firstly illustrates the broad projections of the CSF-contacting nucleus from the brainstem and spinal cord, which implies the complicated functions of the nucleus especially for the unique roles of coordination in neural and body fluids regulation.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Song SY, Li Y, Zhai XM, Li YH, Bao CY, Shan CJ, Hong J, Cao JL, Zhang LC. Monosynaptic Input Mapping of Diencephalic Projections to the Cerebrospinal Fluid-Contacting Nucleus in the Rat. Front Neuroanat 2020; 14:7. [PMID: 32180709 PMCID: PMC7059736 DOI: 10.3389/fnana.2020.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: To investigate the projections the cerebrospinal fluid-contacting (CSF-contacting) nucleus receives from the diencephalon and to speculate on the functional significance of these connections. Methods: The retrograde tracer cholera toxin B subunit (CB) was injected into the CSF-contacting nucleus in SD rats according to the experimental formula of the stereotaxic coordinates. Animals were perfused 7–10 days after the injection, and the diencephalon was sliced at 40 μm with a freezing microtome. CB-immunofluorescence was performed on all diencephalic sections. The features of CB-positive neuron distribution in the diencephalon were observed with a fluorescence microscope. Results: The retrograde labeled CB-positive neurons were found in the epithalamus, subthalamus, and hypothalamus. Three functional diencephalic areas including 43 sub-regions revealed projections to the CSF-contacting nucleus. The CB-positive neurons were distributed in different density ranges: sparse, moderate, and dense. Conclusion: Based on the connectivity patterns of the CSF-contacting nucleus that receives anatomical inputs from the diencephalon, we preliminarily assume that the CSF-contacting nucleus participates in homeostasis regulation, visceral activity, stress, emotion, pain and addiction, and sleeping and arousal. The present study firstly illustrates the broad projections of the CSF-contacting nucleus from the diencephalon, which implies the complicated functions of the nucleus especially for the unique roles of coordination in neural and body fluids regulations.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Song SY, Zhang LC. The Establishment of a CSF-Contacting Nucleus "Knockout" Model Animal. Front Neuroanat 2018; 12:22. [PMID: 29636668 PMCID: PMC5881085 DOI: 10.3389/fnana.2018.00022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
To establish an entirely cerebrospinal fluid (CSF)-contacting nucleus-deficient model animal, we used cholera toxin B subunit (CB)- saporin (SAP), which is an analog of CB-HRP that specifically labels the CSF-contacting nucleus, to exclusively damage the nucleus. The effectiveness and specificity of the ablation were evaluated upon days 1-10 after CB-SAP microinjection into the brain ventricular system. The vital status, survival, and common physiological parameters of the model animals were also assessed during the experimental period. The results demonstrated that CB-SAP damaged only the CSF-contacting nucleus, but not other functional structures, in the brain. The complete ablation occurred by day 7 after CB-SAP microinjection. A model animal that had no CSF-contacting nucleus was established after survival beyond that time point. No obvious effects were observed in the vital status of the model animals, and their survival was ensured. The common physiological parameters of model animals were stable. The present study provides a method to establish a CSF-contacting nucleus "knockout" model animal, which is similar to a gene knockout model animal for studying this particular nucleus in vivo.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Zhang C, Li Y, Wang X, Fei Y, Zhang L. Involvement of neurokinin 1 receptor within the cerebrospinal fluid‑contacting nucleus in visceral pain. Mol Med Rep 2017; 15:4300-4304. [PMID: 28440440 DOI: 10.3892/mmr.2017.6499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
Studies have shown that the cerebrospinal fluid‑contacting nucleus (CSF‑CN) may be associated with the transduction and regulation of pain signals. However, the role of the CSF‑CN remains to be elucidated. Emerging evidence has suggested that neurokinin 1 receptor (NK1R) is important in the development of visceral pain and hyperalgesia, however, whether NK1R exists in the CSF‑CN and its exact role in visceral pain remain to be fully elucidated. In the present study, double‑labeled immunofluorescence staining and western blot analysis were performed to investigate this. It was revealed that NK1R was distributed in the CSF‑CN. Following the induction of visceral pain by formalin instillation, NK1R in the CSF‑CN was upregulated. In addition, by observing the behaviors of rats subjected to visceral pain, it was found that visceral pain was relieved by lateral intracerbroventricular injection of the NK1R antagonist, RP67580. These data provided a broader understanding of the role of NK1R in the CSF‑CN and demonstrated that the CSF‑CN was involved in acute visceral pain via the regulation of NK1R.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xin Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Yan Fei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Licai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
8
|
Role of cerebrospinal fluid-contacting nucleus in sodium sensing and sodium appetite. Physiol Behav 2015; 147:291-9. [DOI: 10.1016/j.physbeh.2015.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/23/2022]
|
9
|
Wu YH, Song SY, Liu H, Xing D, Wang X, Fei Y, Li GL, Zhang C, Li Y, Zhang LC. Role of adrenomedullin in the cerebrospinal fluid-contacting nucleus in the modulation of immobilization stress. Neuropeptides 2015; 51:43-54. [PMID: 25911494 DOI: 10.1016/j.npep.2015.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/07/2015] [Accepted: 03/25/2015] [Indexed: 01/10/2023]
Abstract
The contribution of the cerebrospinal fluid-contacting nucleus (CSF-contacting nucleus) and adrenomedullin (ADM) to the developmental modulation of stressful events remains controversial. This study explored the effects of endogenous ADM in the CSF-contacting nucleus on immobilization of stress-induced physiological parameter disorders and glucocorticoid hormone releasing hormone (CRH), rat plasma corticosterone expression, and verification of such effects by artificially lowering ADM expression in the CSF-contacting nucleus by targeted ablation of the nucleus. Immunohistochemical experiments showed that ADM-like immunoreactivity and the calcitonin receptor-like receptor (CRLR) marker were localized in the CSF-contacting nucleus. After 7 continuous days of chronic immobilization stress (CIS), animals exhibited anxiety-like behavior. Also, an increase in serum corticosterone, and enhanced expression of ADM in the CSF-contacting nucleus were observed, following activation by CIS. The intracerebroventricular (i.c.v.) administration of the ADM receptor antagonist AM22-52 significantly reduced ADM in the CSF-contacting nucleus, additionally, blocked the effects of ADM, meaning the expression of CRH in the hypothalamic paraventricular nucleus (Pa) and serum corticosterone level were increased, and the physiological parameters of the rats became correspondingly deteriorated. Additionally, the i.c.v. administration of cholera toxin subunit B-saporin (CB-SAP), a cytotoxin coupled to a cholera toxin subunit, completely eliminated the CSF-contacting nucleus, worsening the reaction of the body to CIS. The collective results demonstrated that ADM acted as a stress-related peptide in the CSF-contacting nucleus, and its lower expression and blocked effects in the nucleus contributed to the deterioration of stress-induced physiologic parameter disorders as well as the excessive expressions of stress-related hormones which were part of the hypothalamic-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- Yue-Hong Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - He Liu
- Xuzhou Medical College Affiliated Hospital, Xuzhou 221004, Jiangsu Province, China
| | - Dan Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Xin Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Yan Fei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Guang-Ling Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Chao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
10
|
Liu H, Yan WW, Lu XX, Zhang XL, Wei JQ, Wang XY, Wang T, Wu T, Cao J, Shao CJ, Zhou F, Zhang HX, Zhang P, Zang T, Lu XF, Cao JL, Ding HL, Zhang LC. Role of the cerebrospinal fluid-contacting nucleus in the descending inhibition of spinal pain transmission. Exp Neurol 2014; 261:475-85. [DOI: 10.1016/j.expneurol.2014.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/19/2014] [Accepted: 07/29/2014] [Indexed: 01/07/2023]
|
11
|
Djenoune L, Khabou H, Joubert F, Quan FB, Nunes Figueiredo S, Bodineau L, Del Bene F, Burcklé C, Tostivint H, Wyart C. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Front Neuroanat 2014; 8:26. [PMID: 24834029 PMCID: PMC4018565 DOI: 10.3389/fnana.2014.00026] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Over 90 years ago, Kolmer and Agduhr identified spinal cerebrospinal fluid-contacting neurons (CSF-cNs) based on their morphology and location within the spinal cord. In more than 200 vertebrate species, they observed ciliated neurons around the central canal that extended a brush of microvilli into the cerebrospinal fluid (CSF). Although their morphology is suggestive of a primitive sensory cell, their function within the vertebrate spinal cord remains unknown. The identification of specific molecular markers for these neurons in vertebrates would benefit the investigation of their physiological roles. PKD2L1, a transient receptor potential channel that could play a role as a sensory receptor, has been found in cells contacting the central canal in mouse. In this study, we demonstrate that PKD2L1 is a specific marker for CSF-cNs in the spinal cord of mouse (Mus musculus), macaque (Macaca fascicularis) and zebrafish (Danio rerio). In these species, the somata of spinal PKD2L1+ CSF-cNs were located below or within the ependymal layer and extended an apical bulbous extension into the central canal. We found GABAergic PKD2L1-expressing CSF-cNs in all three species. We took advantage of the zebrafish embryo for its transparency and rapid development to identify the progenitor domains from which pkd2l1+ CSF-cNs originate. pkd2l1+ CSF-cNs were all GABAergic and organized in two rows—one ventral and one dorsal to the central canal. Their location and marker expression is consistent with previously described Kolmer–Agduhr cells. Accordingly, pkd2l1+ CSF-cNs were derived from the progenitor domains p3 and pMN defined by the expression of nkx2.2a and olig2 transcription factors, respectively. Altogether our results suggest that a system of CSF-cNs expressing the PKD2L1 channel is conserved in the spinal cord across bony vertebrate species.
Collapse
Affiliation(s)
- Lydia Djenoune
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France ; Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Hanen Khabou
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Fanny Joubert
- UPMC Univ. Paris 06 Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR S 1158 Paris, France
| | - Feng B Quan
- Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Sophie Nunes Figueiredo
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Laurence Bodineau
- UPMC Univ. Paris 06 Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR S 1158 Paris, France
| | - Filippo Del Bene
- Institut Curie Paris, France ; Centre National de la Recherche Scientifique UMR 3215 Paris, France ; Institut National de la Santé et de la Recherche Médicale U 934 Paris, France
| | - Céline Burcklé
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| |
Collapse
|
12
|
Evaluation of three tracers for labeling distal cerebrospinal fluid-contacting neurons. Neurosci Bull 2013; 29:576-80. [PMID: 23585297 DOI: 10.1007/s12264-013-1332-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/17/2012] [Indexed: 01/26/2023] Open
Abstract
It has been reported that distal cerebrospinal fluid-contacting neurons (dCSF-CNs) can be detected by immunohistochemical assay using cholera toxin subunit B-conjugated horseradish peroxidase (CB-HRP). In the present study, another two methods with CB alone or CB-conjugated FITC (CB-FITC) were used, and the results from the three methods were compared. Adult Sprague-Dawley rats were randomly divided into three groups with CB-HRP, CB or CB-FITC. Tracers were diluted to 30% in artificial cerebrospinal fluid and injected separately (in a volume of 3 μL) into the lateral ventricle. Animals from the CB-HRP and CB groups were perfused 48 h after surgery while animals from the CB-FITC group were perfused 1, 3, 6, 12, 24 or 48 h after surgery. The brain was sectioned (40 μm) for immunofluorescence and five sections with positive neurons were selected from each rat for neuron counting. Three clusters of positive neurons in a 'Y-like' distribution were detected ventral to the cerebral aqueduct of rats from the three groups. No significant difference was observed among the quantitative data. In the CB-FITC group, stable staining was detected even at 6 h after injection. Taken together, lateral ventricle injection of CB/CB-FITC is a useful method for labeling dCSF-CNs in rats. The CB-FITC method makes dCSF-CNs labeling much simpler and more convenient.
Collapse
|
13
|
Wu TT, Zhao ZJ, Xu C, Zhang LC. Distribution of TRPC6 in the Cerebrospinal Fluid-Contacting Nucleus of Rat Brain Parenchyma and its Expression in Morphine Dependence and Withdrawal. Neurochem Res 2011; 36:2316-21. [DOI: 10.1007/s11064-011-0556-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2011] [Indexed: 02/02/2023]
|
14
|
Lu XF, Li YY, Wang CG, Wei JQ, Ye Y, Zhang LC, Cao JL. Substance P in the cerebrospinal fluid-contacting nucleus contributes to morphine physical dependence in rats. Neurosci Lett 2011; 488:188-92. [DOI: 10.1016/j.neulet.2010.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
|
15
|
Veening JG, Barendregt HP. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res 2010; 7:1. [PMID: 20157443 PMCID: PMC2821375 DOI: 10.1186/1743-8454-7-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/06/2010] [Indexed: 01/04/2023] Open
Abstract
The cerebrospinal fluid (CSF) system provides nutrients to and removes waste products from the brain. Recent findings suggest, however, that in addition, the CSF contains message molecules in the form of actively released neuroactive substances. The concentrations of these vary between locations, suggesting they are important for the changes in brain activity that underlie different brain states, and induce different sensory input and behavioral output relationships.The cranial CSF displays a rapid caudally-directed ventricular flow followed by a slower rostrally-directed subarachnoid flow (mainly towards the cribriform plate and from there into the nasal lymphatics). Thus, many brain areas are exposed to and can be influenced by substances contained in the CSF. In this review we discuss the production and flow of the CSF, including the mechanisms involved in the regulation of its composition. In addition, the available evidence for the release of neuropeptides and other neuroactive substances into the CSF is reviewed, with particular attention to the selective effects of these on distant downstream receptive brain areas. As a conclusion we suggest that (1) the flowing CSF is involved in more than just nutrient and waste control, but is also used as a broadcasting system consisting of coordinated messages to a variety of nearby and distant brain areas; (2) this special form of volume transmission underlies changes in behavioral states.
Collapse
Affiliation(s)
- Jan G Veening
- Department of Anatomy, (109) UMC St Radboud, Nijmegen, the Netherlands.
| | | |
Collapse
|
16
|
Du J, Yang X, Zhang L, Zeng YM. Expression of TRPM8 in the distal cerebrospinal fluid-contacting neurons in the brain mesencephalon of rats. Cerebrospinal Fluid Res 2009; 6:3. [PMID: 19292918 PMCID: PMC2662787 DOI: 10.1186/1743-8454-6-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 03/17/2009] [Indexed: 01/12/2023] Open
Abstract
Background It has been shown that distal cerebrospinal fluid-contacting neurons (dCSF-CNs) exist near the ventral midline of the midbrain aqueduct and also in the grey matter of the inferior third ventricle and the fourth ventricle floor in the superior segment of the pons. The dCSF-CNs communicate between the cerebrospinal fluid (CSF) and the brain parenchyma and may participate in the transduction and regulation of pain signals. The cold sensation receptor channel, TRPM8 is involved in analgesia for neuropathic pain, but whether the TRPM8 receptor exists on dCSF-CNs remains unknown. However, there is preliminary evidence that TRPM8 is expressed in dCSF-CNs and may participate in the transmission and regulation of sensory information between brain parenchyma and cerebrospinal fluid (CSF) in rats. Methods Retrograde tracing of the cholera toxin subunit B labeled with horseradish peroxidase (CB-HRP) injected into the lateral ventricle was used to identify dCSF-CNs. A double-labeled immunofluorescent technique and laser scanning confocal microscopy were used to identify the expression of TRPM8 in dCSF-CNs. Software Image-Pro Plus was used to count the number of neurons in three sections where CB-HRP positive neurons were located in the mesencephalon of six rats. Results The cell bodies of CB-HRP-positive dCSF-CNs were found in the brain parenchyma near the midline of the ventral Aq, also in the grey of the 3V, and the 4V floor in the superior segment of the pons. In the mesencephalon their processes extended into the CSF. TRPM8 labeled neurons were also found in the same area as were CB-HRP/TRPM8 double-labeled neurons. CB-HRP/TRPM8 double-labeled neurons were found in 42.9 ± 2.3% of neurons labeled by TRPM8, and all CB-HRP-labeled neurons were also labeled with TPRM8. Conclusion This study has demonstrated that the cold sensation receptor channel, TRPM8, is localised within the dCSF-CNs of the mesencephalon. TRPM8 acts as receptor of dCSF-CNs for sensation transmission and pain regulation.
Collapse
Affiliation(s)
- Jing Du
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221002, PR China.
| | | | | | | |
Collapse
|