1
|
Evans JO, Tsaneva-Atanasova K, Buckingham G. Using immersive virtual reality to remotely examine performance differences between dominant and non-dominant hands. VIRTUAL REALITY 2023; 27:1-16. [PMID: 37360802 PMCID: PMC10162902 DOI: 10.1007/s10055-023-00794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/19/2023] [Indexed: 06/28/2023]
Abstract
Circle drawing may be a useful task to study upper-limb function in patient populations. However, previous studies rely on expensive and bulky robotics to measure performance. For clinics or hospitals with limited budgets and space, this may be unfeasible. Virtual reality (VR) provides a portable and low-cost tool with integrated motion capture. It offers potentially a more feasible medium by which to assess upper-limb motor function. Prior to use with patient populations, it is important to validate and test the capabilities of VR with healthy users. This study examined whether a VR-based circle drawing task, completed remotely using participant's own devices, could capture differences between movement kinematics of the dominant and non-dominant hands in healthy individuals. Participants (n = 47) traced the outline of a circle presented on their VR head-mounted displays with each hand, while the positions of the hand-held controllers were continuously recorded. Although there were no differences observed in the size or roundness of circles drawn with each hand, consistent with prior literature our results did show that the circles drawn with the dominant hand were completed faster than those with the non-dominant hand. This provides preliminary evidence that a VR-based circle drawing task may be a feasible method for detecting subtle differences in function in clinical populations. Supplementary Information The online version contains supplementary material available at 10.1007/s10055-023-00794-z.
Collapse
Affiliation(s)
- Jack Owen Evans
- Department of Public Health and Sport Sciences, Richards Building, Magdalen Road, University of Exeter, Exeter, Devon EX2 4TA UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, Devon EX4 4QD UK
| | - Gavin Buckingham
- Department of Public Health and Sport Sciences, Richards Building, Magdalen Road, University of Exeter, Exeter, Devon EX2 4TA UK
| |
Collapse
|
2
|
Cohen EJ, Bravi R, Minciacchi D. Assessing the Development of Fine Motor Control in Elementary School Children Using Drawing and Tracing Tasks. Percept Mot Skills 2021; 128:605-624. [PMID: 33496640 DOI: 10.1177/0031512521990358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adequately quantifying fine motor control is imperative for understanding individual motor behavior development and mastery. We recently showed that using different tasks to evaluate fine motor control may produce different results, suggesting that multiple measures for fine motor control may be evaluating different skills and/or underlying processes. Specifically, drawing behavior may depend on internal cueing, whereas tracing depends more on external cueing. To better understand how an individual develops a certain preference for cueing, we evaluated fine motor control in 265 typically developing children (aged 6-11) by measuring their accuracy for both drawing and tracing a circle. Our results first confirmed that there was no significant correlation between tracing and drawing task performances during this phase of development and, secondly, showed a significant developmental improvement in tracing, especially between 2nd and 3rd graders, whereas drawing ability improved only moderately. We discuss the potential roles of attentional focus and cognitive development as possible influencing factors for these developmental patterns. We conclude that using both a drawing and tracing task to evaluate fine motor control is rapid, economic and valuable for monitoring motor development among elementary school children.
Collapse
Affiliation(s)
- Erez J Cohen
- Department of Experimental and Clinical Medicine, Physiological Sciences Section, University of Florence, Florence, Italy
| | - Riccardo Bravi
- Department of Experimental and Clinical Medicine, Physiological Sciences Section, University of Florence, Florence, Italy
| | - Diego Minciacchi
- Department of Experimental and Clinical Medicine, Physiological Sciences Section, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Isaković MS, Savić AM, Konstantinović LM, Popović MB. Validation of computerized square-drawing based evaluation of motor function in patients with stroke. Med Eng Phys 2019; 71:114-120. [PMID: 31345670 DOI: 10.1016/j.medengphy.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/04/2019] [Accepted: 06/07/2019] [Indexed: 12/01/2022]
Abstract
Human-administered clinical scales are commonly used for quantifying motor performance and determining the course of therapy in post-stroke individuals. Computerized methods aim to improve consistency, resolution and duration of patients' evaluation. The objective of this study was to test the validity of computerized square-drawing test (DT) for assessment of shoulder and elbow function by using novel set of DT-based kinematic measures and explore their relation with Wolf Motor Function Test (WMFT) scoring. Forty-seven stroke survivors were tested before and after the rehabilitation program. DT involved drawing a square in horizontal plane using a mechanical manipulandum and a digitizing board. Depending on the initial classification of patients into low or high performance groups, the two different outcome metrics were derived from DT kinematic data for evaluation of each group. Linear regression models applied to map DT outcome values to WMFT scores for both groups resulted with high correlation coefficients and low mean absolute prediction error. In conclusion, we have identified a set of kinematic measures suitable for fast and objective motor function evaluation and functional classification, strongly correlating with WMFT score in post-stroke individuals. The results support validation of square-drawing motor function assessment, encouraging its use in clinical settings.
Collapse
Affiliation(s)
- Milica S Isaković
- School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia; Tecnalia, Health Division, Mikeletegi Pasealekua 1-3, 20009 Donostia-San Sebastian, Spain.
| | - Andrej M Savić
- School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia; Tecnalia, Health Division, Mikeletegi Pasealekua 1-3, 20009 Donostia-San Sebastian, Spain
| | - Ljubica M Konstantinović
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia; Clinic for Rehabilitation "Dr Miroslav Zotović", Sokobanjska 13, 11000 Belgrade, Serbia
| | - Mirjana B Popović
- School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia; Institute for Medical Research, University of Belgrade, Dr Subotića 4, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Precision in drawing and tracing tasks: Different measures for different aspects of fine motor control. Hum Mov Sci 2018; 61:177-188. [PMID: 30145538 DOI: 10.1016/j.humov.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/09/2018] [Accepted: 08/19/2018] [Indexed: 11/21/2022]
Abstract
Drawing and tracing tasks, by being relatively easy to execute and evaluate, have been incorporated in many paradigms used to study motor control. While these tasks are helpful when examining various aspects relative to the performance, the relationship in proficiency between these tasks was not evaluated to our knowledge. Seeing that drawing is thought to be an internally cued and tracing an externally cued task, differences in performances are to be expected. In this study, a quantitative evaluation of the precision of circle drawing and tracing, and spiral tracing was made on 150 healthy subjects. Our results show that, while precision is correlated when repeating drawing circles, tracing spirals, or tracing circles as well as between tracing spirals and tracing circles; there is no correlation when subjects performed drawing circles and tracing spirals or between drawing and tracing of circles. These results suggest that this lack of correlation is task dependent and not shape dependent. We suggest that the evaluation of fine motor control should include both a tracing and a drawing task, taking in consideration the precision in each task. We believe that this approach could help not only to evaluate fine motor control more accurately, but also to identify subjects who are more reliant on either internal or external cueing and to what extent.
Collapse
|
5
|
Bisio A, Pedullà L, Bonzano L, Ruggeri P, Brichetto G, Bove M. Evaluation of Handwriting Movement Kinematics: From an Ecological to a Magnetic Resonance Environment. Front Hum Neurosci 2016; 10:488. [PMID: 27746727 PMCID: PMC5040726 DOI: 10.3389/fnhum.2016.00488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/14/2016] [Indexed: 11/24/2022] Open
Abstract
Writing is a means of communication which requires complex motor, perceptual, and cognitive skills. If one of these abilities gets lost following traumatic events or due to neurological diseases, handwriting could deteriorate. Occupational therapy practitioners provide rehabilitation services for people with impaired handwriting. However, to determine the effectiveness of handwriting interventions no studies assessed whether the proposed treatments improved the kinematics of writing movement or had an effect at the level of the central nervous system. There is need to find new quantitative methodologies able to describe the behavioral and the neural outcomes of the rehabilitative interventions for handwriting. In the present study we proposed a combined approach that allowed evaluating the kinematic parameters of handwriting movements, acquired by means of a magnetic resonance-compatible tablet, and their neural correlates obtained simultaneously from a functional magnetic resonance imaging examination. Results showed that the system was reliable in term of reproducibility of the kinematic data during a test/re-test procedure. Further, despite the modifications with respect to an ecological writing movement condition, the kinematic parameters acquired inside the MR-environment were descriptive of individuals’ movement features. At last, the imaging protocol succeeded to show the activation of the cerebral regions associated with the production of writing movement in healthy people. From these findings, this methodology seems to be promising to evaluate the handwriting movement deficits and the potential alterations in the neural activity in those individuals who have handwriting difficulties. Finally, it would provide a mean to quantitatively assess the effect of a rehabilitative treatment.
Collapse
Affiliation(s)
- Ambra Bisio
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy
| | - Ludovico Pedullà
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of GenoaGenoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of GenoaGenoa, Italy
| | - Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa Genoa, Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa Genoa, Italy
| |
Collapse
|