1
|
Decock A, Ongenaert M, De Wilde B, Brichard B, Noguera R, Speleman F, Vandesompele J. Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait. Epigenetics 2016; 11:761-771. [PMID: 27599161 DOI: 10.1080/15592294.2016.1226739] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023] Open
Abstract
Stage 4S neuroblastoma (NB) is a special type of NB found in infants with metastases at diagnosis and is associated with an excellent outcome due to its remarkable capacity to undergo spontaneous regression. As genomics have not been able to explain this intriguing clinical presentation, we here aimed at profiling the DNA methylome of stage 4S NB to better understand this phenomenon. To this purpose, differential methylation analyses between International Neuroblastoma Staging System (INSS) stage 4S, stage 4 and stage 1/2 were performed, using methyl-CpG-binding domain (MBD) sequencing data of 14 stage 4S, 14 stage 4, and 13 stage 1/2 primary NB tumors (all MYCN non-amplified in order not to confound results). Stage 4S-specific hyper- and hypomethylated promoters were determined and further characterized for genomic localization and function by cytogenetic band enrichment, gene set enrichment, transcription factor target enrichment and differential RNA expression analyses. We show that specific chromosomal locations are enriched for stage 4S differentially methylated promoters and that stage 4S tumors show characteristic hypermethylation of specific subtelomeric promoters. Furthermore, genes involved in important oncogenic pathways, in neural crest development and differentiation, and in epigenetic processes are differentially methylated and expressed in stage 4S tumors. Based on these findings, we describe new biological mechanisms possibly contributing to the stage 4S-specific tumor biology and spontaneous regression. In conclusion, this study is the first to describe the highly characteristic stage 4S DNA methylome. These findings will open new avenues to further unravel the NB pathology in general and stage 4S disease specifically.
Collapse
Affiliation(s)
- Anneleen Decock
- a Center for Medical Genetics, Ghent University , Ghent , Belgium.,b Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Maté Ongenaert
- a Center for Medical Genetics, Ghent University , Ghent , Belgium
| | - Bram De Wilde
- a Center for Medical Genetics, Ghent University , Ghent , Belgium.,b Cancer Research Institute Ghent (CRIG) , Ghent , Belgium.,c Department of Pediatric Hematology and Oncology , Ghent University Hospital , Ghent , Belgium
| | - Bénédicte Brichard
- d Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Rosa Noguera
- e Department of Pathology , Medical School, University of Valencia, and Health Research Institute INCLIVA , Valencia , Spain
| | - Frank Speleman
- a Center for Medical Genetics, Ghent University , Ghent , Belgium.,b Cancer Research Institute Ghent (CRIG) , Ghent , Belgium
| | - Jo Vandesompele
- a Center for Medical Genetics, Ghent University , Ghent , Belgium.,b Cancer Research Institute Ghent (CRIG) , Ghent , Belgium.,f Bioinformatics Institute Ghent - From Nucleotides to Networks (BIG N2N) , Ghent , Belgium
| |
Collapse
|
2
|
Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI). Biomaterials 2015; 44:155-72. [DOI: 10.1016/j.biomaterials.2014.12.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2014] [Revised: 11/27/2014] [Accepted: 12/16/2014] [Indexed: 01/03/2023]
|
3
|
SPOCK3, a risk gene for adult ADHD and personality disorders. Eur Arch Psychiatry Clin Neurosci 2014; 264:409-21. [PMID: 24292267 DOI: 10.1007/s00406-013-0476-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/13/2013] [Accepted: 11/17/2013] [Indexed: 12/11/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most frequent psychiatric disorder in children, where it displays a global prevalence of 5 %. In up to 50 % of the cases, ADHD may persist into adulthood (aADHD), where it is often comorbid with personality disorders. Due to a potentially heritable nature of this comorbidity, we hypothesized that their genetic framework may contain common risk-modifying genes. SPOCK3, a poorly characterized, putatively Ca(2+)-binding extracellular heparan/chondroitin sulfate proteoglycan gene encoded by the human chromosomal region 4q32.3, was found to be associated with polymorphisms among the top ranks in a genome-wide association study (GWAS) on ADHD and a pooled GWAS on personality disorder (PD). We therefore genotyped 48 single nucleotide polymorphisms (SNPs) representative of the SPOCK3 gene region in 1,790 individuals (n aADHD = 624, n PD = 630, n controls = 536). In this analysis, we found two SNPs to be nominally associated with aADHD (rs7689440, rs897511) and four PD-associated SNPs (rs7689440, rs897511, rs17052671 and rs1485318); the latter even reached marginal significance after rigorous Bonferroni correction. Bioinformatics tools predicted a possible influence of rs1485318 on transcription factor binding, whereas the other candidate SNPs may have effects on alternative splicing. Our results suggest that SPOCK3 may modify the genetic risk for ADHD and PD; further studies are, however, needed to identify the underlying mechanisms.
Collapse
|
4
|
Zhang S, Kwan P, Baum L. The potential role of CAMSAP1L1 in symptomatic epilepsy. Neurosci Lett 2013; 556:146-51. [PMID: 24148305 DOI: 10.1016/j.neulet.2013.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022]
Abstract
In a recent genome-wide association study (GWAS) of symptomatic epilepsy in the Chinese population, the most significant single nucleotide polymorphism (SNP) allele was rs2292096 [G] (P=1.0×10(-8), odds ratio [OR]=0.63), in the CAMSAP1L1 gene (also known as CAMSAP2). Here, we report that rs2292096 genotypes tended to associate with expression of CAMSAP1L1 RNA in the temporal lobe (p=0.054) and hippocampus (p=0.20) of epilepsy surgery patients, with expression tending to increase with the G allele. CAMSAP1L1 and β-tubulin double immunofluorescence exhibited partial overlap. CAMSAP1L1 siRNA transfection of human SH-SY5Y neuroblastoma cells treated with or without retinoic acid reduced the CAMSAP1L1 protein level nearly 60% and stimulated neurite outgrowth, as measured by total length, number of processes and number of branches. Therefore, the rs2292096 G allele of CAMSAP1L1, which was associated with reduced risk of symptomatic epilepsy, tended to associate with increased expression of CAMSAP1L1, which represses neurite outgrowth. Greater neurite growth in response to brain insults might increase formation of ectopic neural circuits and thus the risk of epileptogenesis.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
5
|
Bayona-Bafaluy MP, Sánchez-Cabo F, Fernández-Silva P, Pérez-Martos A, Enríquez JA. A genome-wide shRNA screen for new OxPhos related genes. Mitochondrion 2011; 11:467-75. [PMID: 21292037 DOI: 10.1016/j.mito.2011.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2010] [Revised: 11/24/2010] [Accepted: 01/24/2011] [Indexed: 11/16/2022]
Abstract
The mitochondrial oxidative phosphorylation (OxPhos) system produces most of the ATP required by the cell. The structural proteins of the OxPhos holoenzymes are well known, but important aspects of their biogenesis and regulation remain to be uncovered and a significant fraction of mitochondrial proteins have yet to be identified. We have used a high throughput, genome-wide RNA interference (RNAi) approach to identify new OxPhos-related genes. We transduced a mouse fibroblast cell line with a lentiviral-based shRNA-library, and screened the cell population for growth impairment in galactose-based medium, which requires an intact OxPhos system. Candidate genes were ranked according to their co-expression with known genes encoding OxPhos mitochondria-located proteins. For the top ranking candidates the cellular process in which they are involved was evaluated. Our results show that the use of genome-wide RNAi together with screening for deficient growth in galactose medium is a suitable approach to identifying OxPhos-related and cellular energy metabolism-related genes. Interestingly also ubiquitin-proteasome related genes were selected.
Collapse
Affiliation(s)
- María Pilar Bayona-Bafaluy
- Departamento de Bioquímica y Biología Molecular y Celular. Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50013, Spain
| | | | | | | | | |
Collapse
|
6
|
Alishahi A, Koyano-Nakagawa N, Nakagawa Y. Regional expression of MTG genes in the developing mouse central nervous system. Dev Dyn 2009; 238:2095-102. [PMID: 19618476 DOI: 10.1002/dvdy.22021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
Abstract
Myeloid translocation gene (MTG) proteins are transcriptional repressors that are highly conserved across species. We studied the expression of three members of this gene family, MTGR1, MTG8, and MTG16 in developing mouse central nervous system by in situ hybridization. All of these genes are detected as early as embryonic day 11.5. Because these genes are known to be induced by proneural genes during neurogenesis, we analyzed the expression of MTG genes in relation to two proneural genes, Neurog2 (also known as Ngn2 or Neurogenin 2) and Ascl1 (also known as Mash1). While MTGR1 are generally expressed in regions that also express Neurog2, MTG8 and MTG16 expression is associated more tightly with that of Ascl1-expressing neural progenitor cells. These results suggest the possibility that expression of MTG genes is differentially controlled by specific proneural genes during neurogenesis.
Collapse
Affiliation(s)
- Amin Alishahi
- Department of Neuroscience and Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|