1
|
Titulaer J, Björkholm C, Feltmann K, Malmlöf T, Mishra D, Bengtsson Gonzales C, Schilström B, Konradsson-Geuken Å. The Importance of Ventral Hippocampal Dopamine and Norepinephrine in Recognition Memory. Front Behav Neurosci 2021; 15:667244. [PMID: 33927604 PMCID: PMC8076496 DOI: 10.3389/fnbeh.2021.667244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurons originating from the ventral tegmental area (VTA) and the locus coeruleus are innervating the ventral hippocampus and are thought to play an essential role for efficient cognitive function. Moreover, these VTA projections are hypothesized to be part of a functional loop, in which dopamine regulates memory storage. It is hypothesized that when a novel stimulus is encountered and recognized as novel, increased dopamine activity in the hippocampus induces long-term potentiation and long-term storage of memories. We here demonstrate the importance of increased release of dopamine and norepinephrinein the rat ventral hippocampus on recognition memory, using microdialysis combined to a modified novel object recognition test. We found that presenting rats to a novel object significantly increased dopamine and norepinephrine output in the ventral hippocampus. Two hours after introducing the first object, a second object (either novel or familiar) was placed in the same position as the first object. Presenting the animals to a second novel object significantly increased dopamine and norepinephrine release in the ventral hippocampus, compared to a familiar object. In conclusion, this study suggests that dopamine and norepinephrine output in the ventral hippocampus has a crucial role in recognition memory and signals novelty.
Collapse
Affiliation(s)
- Joep Titulaer
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Section of Neuropharmacology Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Carl Björkholm
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kristin Feltmann
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Torun Malmlöf
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Devesh Mishra
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Bengtsson Gonzales
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Schilström
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Konradsson-Geuken
- Section of Neuropsychopharmacology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Section of Neuropharmacology Addiction and Behavior, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Microdialysis and its use in behavioural studies: Focus on acetylcholine. J Neurosci Methods 2018; 300:206-215. [DOI: 10.1016/j.jneumeth.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022]
|
3
|
Stiver ML, Jacklin DL, Mitchnick KA, Vicic N, Carlin J, O'Hara M, Winters BD. Cholinergic manipulations bidirectionally regulate object memory destabilization. Learn Mem 2015; 22:203-14. [PMID: 25776038 PMCID: PMC4371172 DOI: 10.1101/lm.037713.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022]
Abstract
Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established involvement in new learning. Accordingly, we investigated the effects of cholinergic manipulations in rats using an object recognition paradigm that requires reactivation novelty to destabilize object memories. The muscarinic receptor antagonist scopolamine, systemically or infused directly into the perirhinal cortex, blocked this novelty-induced memory destabilization. Conversely, systemic oxotremorine or carbachol, muscarinic receptor agonists, administered systemically or intraperirhinally, respectively, mimicked the destabilizing effect of novel information during reactivation. These bidirectional effects suggest a crucial influence of ACh on memory destabilization and the updating functions of reconsolidation. This is a hitherto unappreciated mnemonic role for ACh with implications for its potential involvement in cognitive flexibility and the dynamic process of long-term memory storage.
Collapse
Affiliation(s)
- Mikaela L Stiver
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Derek L Jacklin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Krista A Mitchnick
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nevena Vicic
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Justine Carlin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew O'Hara
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Boyer D Winters
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Cifuentes Castro VH, López Valenzuela CL, Salazar Sánchez JC, Peña KP, López Pérez SJ, Ibarra JO, Villagrán AM. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol 2014; 12:490-508. [PMID: 25977677 PMCID: PMC4428024 DOI: 10.2174/1570159x13666141223223657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto Morales Villagrán
- Department of Molecular and Cellular Biology, Camino Ramón Padilla Sánchez 2100, Nextipac, Zapopan,
Jalisco, México, Zip code: 45110, Mexico
| |
Collapse
|
5
|
Huang M, Panos JJ, Kwon S, Oyamada Y, Rajagopal L, Meltzer HY. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A
and DA D2
antagonism and 5-HT1A
partial agonism. J Neurochem 2013; 128:938-49. [DOI: 10.1111/jnc.12512] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Mei Huang
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| | - John J. Panos
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| | - Sunoh Kwon
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| | - Yoshihiro Oyamada
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
- Dainippon Sumitomo Pharma Co. Ltd.; Osaka Japan
| | - Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| | - Herbert Y. Meltzer
- Department of Psychiatry and Behavioral Sciences; Northwestern Feinberg School of Medicine; Chicago Illinois USA
| |
Collapse
|
6
|
Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 2013; 16:2181-94. [PMID: 24099265 DOI: 10.1017/s1461145713000928] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or ketamine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, including novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A and 5-HT7 antagonism, 5-HT(1A), and GABA(A) agonism, contribute to the efficacy of the AAPDs in the scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT(1A) partial agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone, an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or SB269970, with PCP, to rodents, at doses 5-10 fold greater than those acutely effective to restore NOR following scNMDAR treatment, prevents the effect of scPCP to produce an enduring deficit in NOR. This difference in dosage may be relevant to utilizing AAPDs to prevent the onset of CIS in individuals at high risk for developing schizophrenia. The scNMDAR paradigm may be useful for identifying possible means to treat and prevent CIS.
Collapse
|
7
|
Stanley EM, Wilson MA, Fadel JR. Hippocampal neurotransmitter efflux during one-trial novel object recognition in rats. Neurosci Lett 2012; 511:38-42. [PMID: 22306091 DOI: 10.1016/j.neulet.2012.01.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
Several lines of evidence point to a role for the hippocampal formation and contiguous temporal lobe structures in a variety of learning and memory paradigms. Presumably, these cognitive phenomena are mediated (and accompanied) by dynamic changes in neurochemical transmission that may differ between learning and recall phases. However, the neurotransmitter correlates of most memory-related tasks have not been thoroughly investigated. Here we used a one-trial object recognition paradigm paired with in vivo microdialysis to assess hippocampal acetylcholine (ACh), glutamate and GABA efflux when rats were exposed to familiar objects, and when given the option to explore familiar and novel objects. Rats preferentially explored the novel object over the familiar one when presented with the option. Regardless of object familiarity, object exploration was accompanied by an increase in hippocampal ACh efflux, while GABA efflux was unaffected. However, glutamate efflux was not increased above baseline levels by presentation of familiar objects, but was significantly enhanced in the presence of the novel object. These data suggest that the hippocampus, and in particular, hippocampal glutamate, may be involved in memory processes during novelty recognition paradigms.
Collapse
Affiliation(s)
- Emily M Stanley
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | | | |
Collapse
|
8
|
Cai L, Gibbs RB, Johnson DA. Recognition of novel objects and their location in rats with selective cholinergic lesion of the medial septum. Neurosci Lett 2012; 506:261-5. [PMID: 22119001 PMCID: PMC3462014 DOI: 10.1016/j.neulet.2011.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/06/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022]
Abstract
The importance of cholinergic neurons projecting from the medial septum (MS) of the basal forebrain to the hippocampus in memory function has been controversial. The aim of this study was to determine whether loss of cholinergic neurons in the MS disrupts object and/or object location recognition in male Sprague-Dawley rats. Animals received intraseptal injections of either vehicle, or the selective cholinergic immunotoxin 192 IgG-saporin (SAP). 14 days later, rats were tested for novel object recognition (NOR). Twenty-four hours later, these same rats were tested for object location recognition (OLR) (recognition of a familiar object moved to a novel location). Intraseptal injections of SAP produced an 86% decrease in choline acetyltransferase (ChAT) activity in the hippocampus, and a 31% decrease in ChAT activity in the frontal cortex. SAP lesion had no significant effect on NOR, but produced a significant impairment in OLR in these same rats. The results support a role for septo-hippocampal cholinergic projections in memory for the location of objects, but not for novel object recognition.
Collapse
Affiliation(s)
- Li Cai
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Robert B. Gibbs
- Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261
| | - David A. Johnson
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
9
|
Ihalainen J, Sarajärvi T, Rasmusson D, Kemppainen S, Keski-Rahkonen P, Lehtonen M, Banerjee PK, Semba K, Tanila H. Effects of memantine and donepezil on cortical and hippocampal acetylcholine levels and object recognition memory in rats. Neuropharmacology 2011; 61:891-9. [DOI: 10.1016/j.neuropharm.2011.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 11/17/2022]
|
10
|
Zhang X, Liu L, Zhang X, Ma K, Rao Y, Zhao Q, Li F. Analytical methods for brain targeted delivery system in vivo: perspectives on imaging modalities and microdialysis. J Pharm Biomed Anal 2011; 59:1-12. [PMID: 22088476 DOI: 10.1016/j.jpba.2011.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 01/05/2023]
Abstract
Since the introduction of microdialysis in 1974, the semi-invasive analytical method has grown exponentially. Microdialysis is one of the most potential analysis technologies of pharmacological drug delivery to the brain. In recent decades, analysis of chemicals targeting the brain has led to many improvements. It seems likely that fluorescence imaging was limited to ex vivo and in vitro applications with the exception of several intravital microscopy and photographic imaging approaches. X-ray computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) have been commonly utilized for visualization of distribution and therapeutic effects of drugs. The efficient analytical methods for studies of brain-targeting delivery system is a major challenge in detecting the disposition as well as the variances of the factors that regulate the substances delivery into the brain. In this review, we highlight some of the ongoing trends in imaging modalities and the most recent developments in the field of microdialysis of live animals and present insights into exploiting brain disease for therapeutic and diagnostics purpose.
Collapse
Affiliation(s)
- Xingguo Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Gold PE, Countryman RA, Dukala D, Chang Q. Acetylcholine release in the hippocampus and prelimbic cortex during acquisition of a socially transmitted food preference. Neurobiol Learn Mem 2011; 96:498-503. [PMID: 21907814 DOI: 10.1016/j.nlm.2011.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/08/2011] [Accepted: 08/17/2011] [Indexed: 01/13/2023]
Abstract
Interference with cholinergic functions in hippocampus and prefrontal cortex impairs learning and memory for social transmission of food preference, suggesting that acetylcholine (ACh) release in the two brain regions may be important for acquiring the food preference. This experiment examined release of ACh in the hippocampus and prefrontal cortex of rats during training for social transmission of food preference. After demonstrator rats ate a food with novel flavor and odor, a social transmission of food preference group of rats was allowed to interact with the demonstrators for 30 min, while in vivo microdialysis collected samples for later measurement of ACh release with HPLC methods. A social control group observed a demonstrator that had eaten food without novel flavor and odor. An odor control group was allowed to smell but not ingest food with novel odor. Rats in the social transmission but not control groups preferred the novel food on a trial 48 h later. ACh release in prefrontal cortex, with probes that primarily sampled prelimbic cortex, did not increase during acquisition of the social transmission of food preference, suggesting that training-initiated release of ACh in prelimbic cortex is not necessary for acquisition of the food preference. In contrast, ACh release in the hippocampus increased substantially (200%) upon exposure to a rat that had eaten the novel food. Release in the hippocampus increased significantly less (25%) upon exposure to a rat that had eaten normal food and did not increase significantly in the rats exposed to the novel odor; ACh release in the social transmission group was significantly greater than that of the either of the control groups. Thus, ACh release in the hippocampus but not prelimbic cortex distinguished well the social transmission vs. control conditions, suggesting that cholinergic mechanisms in the hippocampus but not prelimbic cortex are important for acquiring a socially transmitted food preference.
Collapse
Affiliation(s)
- P E Gold
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.
| | | | | | | |
Collapse
|