1
|
Świt P, Pollap A, Orzeł J. Spectroscopic Determination of Acetylcholine (ACh): A Representative Review. Top Curr Chem (Cham) 2023; 381:16. [PMID: 37169979 PMCID: PMC10175388 DOI: 10.1007/s41061-023-00426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/22/2023] [Indexed: 05/13/2023]
Abstract
Acetylcholine (ACh) is one of the most crucial neurotransmitters of the cholinergic system found in vertebrates and invertebrates and is responsible for many processes in living organisms. Disturbances in ACh transmission are closely related to dementia in Alzheimer's and Parkinson's disease. ACh in biological samples is most often determined using chromatographic techniques, radioenzymatic assays, enzyme-linked immunosorbent assay (ELISA), or potentiometric methods. An alternative way to detect and determine acetylcholine is applying spectroscopic techniques, due to low limits of detection and quantification, which is not possible with the methods mentioned above. In this review article, we described a detailed overview of different spectroscopic methods used to determine ACh with a collection of validation parameters as a perspective tool for routine analysis, especially in basic research on animal models on central nervous system. In addition, there is a discussion of examples of other biological materials from clinical and preclinical studies to give the whole spectrum of spectroscopic methods application. Descriptions of the developed chemical sensors, as well as the use of flow technology, were also presented. It is worth emphasizing the inclusion in the article of multi-component analysis referring to other neurotransmitters, as well as the description of the tested biological samples and extraction procedures. The motivation to use spectroscopic techniques to conduct this type of analysis and future perspectives in this field are briefly discussed.
Collapse
Affiliation(s)
- Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna Street, 40-006, Katowice, Poland.
| | | | - Joanna Orzeł
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna Street, 40-006, Katowice, Poland
| |
Collapse
|
2
|
Lamy E, Pilyser L, Paquet C, Bouaziz-Amar E, Grassin-Delyle S. High-sensitivity quantification of acetylcholine and choline in human cerebrospinal fluid with a validated LC-MS/MS method. Talanta 2021; 224:121881. [PMID: 33379090 DOI: 10.1016/j.talanta.2020.121881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 10/23/2022]
Abstract
Acetylcholine is the neurotransmitter of the parasympathetic nervous system, synthesized from choline and involved in several neurodegenerative diseases. Exploration of cholinergic neurotransmission in the human central nervous system is limited by the lack of a sensitive and specific method for the determination of acetylcholine and choline expression. We developed an hydrophilic interaction liquid chromatography - mass spectrometry method for the quantification of both molecules in human cerebrospinal fluid samples. An extensive selectivity study towards endogenous interfering compounds, in particular γ-butyrobetain, was performed and the method was validated according to the European Medicine Agency and Food and Drug Administration guidelines for the validation of bioanalytical methods. The performance of the method was excellent with a lower limit of quantification at 5 ng/L (34.2 pmol/L) for acetylcholine and 5 μg/L for choline, a precision in the range 1.3-11.9% and an accuracy between 85.2 and 113.1%. This suitability of the method for the quantification of acetylcholine and choline in clinical samples was demonstrated with the analysis of patient cerebrospinal fluid samples. Altogether, this validated method allows the simultaneous quantitative analysis of acetylcholine and choline in human cerebrospinal fluid with high sensitivity and selectivity. It will allow to better characterize the cholinergic neurotransmission in human pathologies and to study the effects of drugs acting on this system.
Collapse
Affiliation(s)
- Elodie Lamy
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Léa Pilyser
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France
| | - Claire Paquet
- APHP GHU Nord Lariboisière Fernand-Widal, Centre de Neurologie Cognitive, Paris, France; INSERM U1144, Université de Paris, Paris, France
| | - Elodie Bouaziz-Amar
- INSERM U1144, Université de Paris, Paris, France; Département de Biochimie et Biologie moléculaire - GHU AP-HP.Nord - Université de Paris, Hôpital Lariboisière, Paris, France
| | - Stanislas Grassin-Delyle
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Département de Biotechnologie de la Santé, Montigny le Bretonneux, France; Hôpital Foch, Département des maladies des voies respiratoires, Suresnes, France.
| |
Collapse
|
3
|
Çelebier M, Reçber T, Nemutlu E, Kır S. Ultrafiltration-based Extraction and LC-MS/MS Quantification of Phenylalanine in Human Blood Sample for Metabolite Target Analysis. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190715095300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Phenylalanine is a significant biomarker for various diseases like phenylketonuria,
gastric cancers, and ischemic stroke according to recent studies.
Methods:
In the present study; a simple, sensitive, selective and novel analytical method was validated
by using an ultrafiltration-based extraction and LC-MS/MS quantification of phenylalanine in human
plasma using 13C phenylalanine heavy isotope. Amicon® Ultra Centrifugal Filter was used for ultrafiltration.
Parameters affecting LC separation and MS/MS detection were investigated and optimized.
Chromatographic separation was achieved on a Merck SeQuant ZIC-HILIC (100x4.6 mm, 5 μm) at a
column temperature of 40°C using a mobile phase of mixture of acetonitrile containing 0.1% formic
acid and water containing 0.1% formic acid (50:50 v/v) at a flow rate of 0.35 mL/min. The transitions
m/z 167→121 for 13C phenylalanine, m/z 166→120 for phenylalanine itself were monitored using the
MRM mode.
Result:
The assay was linear concentration range of 0.0025 μg/mL to 1.20 μg/mL (R2=0.999). The developed
method was validated according to FDA guidelines. The method was found linear, sensitive,
precise, accurate, and selective.
Collapse
Affiliation(s)
- Mustafa Çelebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
4
|
Mobed A, Hasanzadeh M, Ahmadalipour A, Fakhari A. Recent advances in the biosensing of neurotransmitters: material and method overviews towards the biomedical analysis of psychiatric disorders. ANALYTICAL METHODS 2020; 12:557-575. [DOI: 10.1039/c9ay02390a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Neurotransmitters are the most important messengers of the nervous system, and any changes in their balances and activities can cause serious neurological, psychiatric and cognitive disorders such as schizophrenia, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Ahmad Mobed
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences
- Faculty of Medicine
- Student Research Committee
- Tabriz University of Medical Sciences
- Iran
| |
Collapse
|
5
|
Citti C, Battisti UM, Braghiroli D, Ciccarella G, Schmid M, Vandelli MA, Cannazza G. A Metabolomic Approach Applied to a Liquid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry Method (HPLC-ESI-HRMS/MS): Towards the Comprehensive Evaluation of the Chemical Composition of Cannabis Medicinal Extracts. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:144-155. [PMID: 28915313 DOI: 10.1002/pca.2722] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 05/08/2023]
Abstract
INTRODUCTION Cannabis sativa L. is a powerful medicinal plant and its use has recently increased for the treatment of several pathologies. Nonetheless, side effects, like dizziness and hallucinations, and long-term effects concerning memory and cognition, can occur. Most alarming is the lack of a standardised procedure to extract medicinal cannabis. Indeed, each galenical preparation has an unknown chemical composition in terms of cannabinoids and other active principles that depends on the extraction procedure. OBJECTIVE This study aims to highlight the main differences in the chemical composition of Bediol® extracts when the extraction is carried out with either ethyl alcohol or olive oil for various times (0, 60, 120 and 180 min for ethyl alcohol, and 0, 60, 90 and 120 min for olive oil). METHODOLOGY Cannabis medicinal extracts (CMEs) were analysed by liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS) using an untargeted metabolomics approach. The data sets were processed by unsupervised multivariate analysis. RESULTS Our results suggested that the main difference lies in the ratio of acid to decarboxylated cannabinoids, which dramatically influences the pharmacological activity of CMEs. Minor cannabinoids, alkaloids, and amino acids contributing to this difference are also discussed. The main cannabinoids were quantified in each extract applying a recently validated LC-MS and LC-UV method. CONCLUSIONS Notwithstanding the use of a standardised starting plant material, great changes are caused by different extraction procedures. The metabolomics approach is a useful tool for the evaluation of the chemical composition of cannabis extracts. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cinzia Citti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100, Lecce, Italy
- CNR NANOTEC, Campus Ecoteckne dell'Università del Salento, Via per Monteroni, 73100, Lecce, Italy
| | - Umberto Maria Battisti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniela Braghiroli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Giuseppe Ciccarella
- CNR NANOTEC, Campus Ecoteckne dell'Università del Salento, Via per Monteroni, 73100, Lecce, Italy
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento & UdR INSTM di Lecce, c/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Martin Schmid
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, Graz, A-8010, Austria
| | - Maria Angela Vandelli
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Giuseppe Cannazza
- CNR NANOTEC, Campus Ecoteckne dell'Università del Salento, Via per Monteroni, 73100, Lecce, Italy
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| |
Collapse
|
6
|
Zhang C, Xia Y, Jiang W, Wang C, Han B, Hao J. Determination of non-neuronal acetylcholine in human peripheral blood mononuclear cells by use of hydrophilic interaction ultra-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1022:265-273. [DOI: 10.1016/j.jchromb.2016.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 11/29/2022]
|
7
|
“Heart-cut” bidimensional achiral-chiral liquid chromatography applied to the evaluation of stereoselective metabolism, in vivo biological activity and brain response to chiral drug candidates targeting the central nervous system. J Chromatogr A 2016; 1443:152-61. [DOI: 10.1016/j.chroma.2016.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 01/01/2023]
|
8
|
Citti C, Battisti UM, Cannazza G, Jozwiak K, Stasiak N, Puja G, Ravazzini F, Ciccarella G, Braghiroli D, Parenti C, Troisi L, Zoli M. 7-Chloro-5-(furan-3-yl)-3-methyl-4H-benzo[e][1,2,4]thiadiazine 1,1-Dioxide as Positive Allosteric Modulator of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor. The End of the Unsaturated-Inactive Paradigm? ACS Chem Neurosci 2016; 7:149-60. [PMID: 26580317 DOI: 10.1021/acschemneuro.5b00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
5-Arylbenzothiadiazine type compounds acting as positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-PAMs) have received particular attention in the past decade for their nootropic activity and lack of the excitotoxic side effects of direct agonists. Recently, our research group has published the synthesis and biological activity of 7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (1), one of the most active benzothiadiazine-derived AMPA-PAMs in vitro to date. However, 1 exists as two stereolabile enantiomers, which rapidly racemize in physiological conditions, and only one isomer is responsible for the pharmacological activity. In the present work, experiments carried out with rat liver microsomes show that 1 is converted by hepatic cytochrome P450 to the corresponding unsaturated derivative 2 and to the corresponding pharmacologically inactive benzenesulfonamide 3. Surprisingly, patch-clamp experiments reveal that 2 displays an activity comparable to that of the parent compound. Molecular modeling studies were performed to rationalize these results. Furthermore, mice cerebral microdialysis studies suggest that 2 is able to cross the blood-brain barrier and increases acetylcholine and serotonin levels in the hippocampus. The experimental data disclose that the achiral hepatic metabolite 2 possesses the same pharmacological activity of its parent compound 1 but with an enhanced chemical and stereochemical stability, as well as an improved pharmacokinetic profile compared with 1.
Collapse
Affiliation(s)
- Cinzia Citti
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
- CNR
NANOTEC, Campus Ecoteckne dell’Università del Salento, Via per
Monteroni, 73100 Lecce, Italy
| | - Umberto M. Battisti
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Giuseppe Cannazza
- CNR
NANOTEC, Campus Ecoteckne dell’Università del Salento, Via per
Monteroni, 73100 Lecce, Italy
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Krzysztof Jozwiak
- Laboratory
of Biopharmacy, Department of Chemistry, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Natalia Stasiak
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giulia Puja
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Federica Ravazzini
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giuseppe Ciccarella
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
- CNR
NANOTEC, Campus Ecoteckne dell’Università del Salento, Via per
Monteroni, 73100 Lecce, Italy
| | - Daniela Braghiroli
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Carlo Parenti
- Dipartimento
di Scienze della Vita, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Luigino Troisi
- Dipartimento
di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Michele Zoli
- Dipartimento
di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
9
|
Bi Y, Qu PC, Wang QS, Zheng L, Liu HL, Luo R, Chen XQ, Ba YY, Wu X, Yang H. Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson's disease. PHARMACEUTICAL BIOLOGY 2015; 53:1516-1524. [PMID: 25857256 DOI: 10.3109/13880209.2014.991835] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Alkaloids of Piper longum L. (Piperaceae) (PLA) include piperine and piperlonguminine. Piper longum and piperine have multiple biological properties including antioxidant activity. OBJECTIVE The present study investigated the neuroprotective effects of PLA in a MPTP-induced mouse model of Parkinson's disease. MATERIALS AND METHODS PLA was prepared by extracting the dry seed of P. longum using 85% ethanol. Adult male C57BL/6 mice were divided into eight groups of 12 rats each. Experimental and control groups received an equivalent volume of saline, 0.5% CMC-Na, and 0.1% Tween 80, treated groups received oral PLA (30, 60, and 120 mg/kg), other groups treated with piperine (60 mg/kg) or Madopar (50 mg/kg). The PLA prevention group (PLA-Pr) administrated PLA (120 mg/kg) for 1 week before MPTP challenged. Except for the PLA-Pr group, others were treated for seven consecutive weeks. Parkinson's disease was induced by injecting MPTP intraperitoneally (25 mg/kg) twice weekly for five consecutive weeks. Dopaminerigic (DA) neurons and their metabolism were detected by UFLC-MS/MS. Tyrosine hydroxylase (TH)-immunohistochemistry assay and Western blotting were performed. The antioxidant enzymatic levels were determined by kit-based assays. RESULTS The LD50 value of PLA was determined at 1509 mg/kg of body weight. PLA (60 mg/kg) can significantly increase total movement time and distance (p < 0.05), increase levels of DA (p < 0.05) and DOPAC (p < .05), increase glutathione (GSH) level and superoxide dismutase (SOD) activity (p < 0.05), and decrease the lipid peroxidation of malondiadehycle (MDA) (p < 0.05) in PLA-treated groups as compared with the control group. DISCUSSION AND CONCLUSION Our results indicate that PLA possesses neuroprotective effects and has ameliorative properties in dopaminergic neurons.
Collapse
Affiliation(s)
- Ying Bi
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University , Beijing , PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cifuentes Castro VH, López Valenzuela CL, Salazar Sánchez JC, Peña KP, López Pérez SJ, Ibarra JO, Villagrán AM. An update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol 2014; 12:490-508. [PMID: 25977677 PMCID: PMC4428024 DOI: 10.2174/1570159x13666141223223657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 11/22/2022] Open
Abstract
To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alberto Morales Villagrán
- Department of Molecular and Cellular Biology, Camino Ramón Padilla Sánchez 2100, Nextipac, Zapopan,
Jalisco, México, Zip code: 45110, Mexico
| |
Collapse
|
11
|
Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:798-811. [PMID: 25448012 DOI: 10.1016/j.bbapap.2014.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in the spatial domain and monitoring their dynamic changes in the temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
|
12
|
Takahashi T, Ohnishi H, Sugiura Y, Honda K, Suematsu M, Kawasaki T, Deguchi T, Fujii T, Orihashi K, Hippo Y, Watanabe T, Yamagaki T, Yuba S. Non‐neuronal acetylcholine as an endogenous regulator of proliferation and differentiation of Lgr5‐positive stem cells in mice. FEBS J 2014; 281:4672-90. [DOI: 10.1111/febs.12974] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/22/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Toshio Takahashi
- Suntory Foundation for Life Sciences Bioorganic Research Institute Osaka Japan
| | - Hiroe Ohnishi
- National Institute of Advanced Industrial Science and Technology Hyogo Japan
| | - Yuki Sugiura
- Department of Biochemistry School of Medicine Keio University Tokyo Japan
- Precursory Research for Embryonic Science and Technology Tokyo Japan
| | - Kurara Honda
- Department of Biochemistry School of Medicine Keio University Tokyo Japan
- Precursory Research for Embryonic Science and Technology Tokyo Japan
| | - Makoto Suematsu
- Department of Biochemistry School of Medicine Keio University Tokyo Japan
- Japan Science Technology Agency Exploratory Research for Advanced Technology Suematsu Gas Biology Project Tokyo Japan
| | - Takashi Kawasaki
- National Institute of Advanced Industrial Science and Technology Hyogo Japan
| | - Tomonori Deguchi
- National Institute of Advanced Industrial Science and Technology Hyogo Japan
| | - Takeshi Fujii
- Department of Pharmacology Faculty of Pharmaceutical Sciences Doshisha Women's College of Liberal Arts Kyoto Japan
| | - Kaoru Orihashi
- Division of Cancer Development System National Cancer Research Institute Tokyo Japan
| | - Yoshitaka Hippo
- Division of Cancer Development System National Cancer Research Institute Tokyo Japan
| | - Takehiro Watanabe
- Suntory Foundation for Life Sciences Bioorganic Research Institute Osaka Japan
| | - Tohru Yamagaki
- Suntory Foundation for Life Sciences Bioorganic Research Institute Osaka Japan
| | - Shunsuke Yuba
- National Institute of Advanced Industrial Science and Technology Hyogo Japan
| |
Collapse
|
13
|
Kennedy RT. Emerging trends in in vivo neurochemical monitoring by microdialysis. Curr Opin Chem Biol 2013; 17:860-7. [PMID: 23856056 DOI: 10.1016/j.cbpa.2013.06.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/11/2013] [Indexed: 12/31/2022]
Abstract
Mapping chemical dynamics in the brain of live subjects is a challenging but highly rewarding goal because it allows neurotransmitter fluctuations to be related to behavior, drug effects, and disease states. A popular method for such measurements is microdialysis sampling coupled to analytical measurements. This method has become well-established for monitoring low molecular weight neurotransmitters, metabolites, and drugs, especially in pharmacological and pharmacokinetic studies. Recent technological developments which improve the temporal and spatial resolution of the methods will enable it to be used for studying behavior and small brain nuclei. Better assays allow monitoring more neurotransmitters simultaneously. Extension to analysis of aggregating proteins like amyloid β is proving extremely useful for uncovering the roles of these molecules and how they contribute to neurodegenerative diseases.
Collapse
Affiliation(s)
- Robert T Kennedy
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
14
|
Kailasa SK, Wu HF. Recent Advances in Mass Spectrometry for the Identification of Neuro-chemicals and their Metabolites in Biofluids. Curr Neuropharmacol 2013; 11:436-64. [PMID: 24381533 PMCID: PMC3744906 DOI: 10.2174/1570159x11311040007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/22/2022] Open
Abstract
Recently, mass spectrometric related techniques have been widely applied for the identification and quantification of neurochemicals and their metabolites in biofluids. This article presents an overview of mass spectrometric techniques applied in the detection of neurological substances and their metabolites from biological samples. In addition, the advances of chromatographic methods (LC, GC and CE) coupled with mass spectrometric techniques for analysis of neurochemicals in pharmaceutical and biological samples are also discussed.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat – 395007, India
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 800, Kaohsiung, Taiwan
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
15
|
Cannazza G, Carrozzo MM, Cazzato AS, Bretis IM, Troisi L, Parenti C, Braghiroli D, Guiducci S, Zoli M. Simultaneous measurement of adenosine, dopamine, acetylcholine and 5-hydroxytryptamine in cerebral mice microdialysis samples by LC–ESI-MS/MS. J Pharm Biomed Anal 2012; 71:183-6. [DOI: 10.1016/j.jpba.2012.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 11/16/2022]
|
16
|
Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry. Anal Bioanal Chem 2012; 403:1851-61. [PMID: 22526660 PMCID: PMC3358544 DOI: 10.1007/s00216-012-5988-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/26/2022]
Abstract
Metabolite distribution imaging via imaging mass spectrometry (IMS) is an increasingly utilized tool in the field of neurochemistry. As most previous IMS studies analyzed the relative abundances of larger metabolite species, it is important to expand its application to smaller molecules, such as neurotransmitters. This study aimed to develop an IMS application to visualize neurotransmitter distribution in central nervous system tissue sections. Here, we raise two technical problems that must be resolved to achieve neurotransmitter imaging: (1) the lower concentrations of bioactive molecules, compared with those of membrane lipids, require higher sensitivity and/or signal-to-noise (S/N) ratios in signal detection, and (2) the molecular turnover of the neurotransmitters is rapid; thus, tissue preparation procedures should be performed carefully to minimize postmortem changes. We first evaluated intrinsic sensitivity and matrix interference using Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS) to detect six neurotransmitters and chose acetylcholine (ACh) as a model for study. Next, we examined both single MS imaging and MS/MS imaging for ACh and found that via an ion transition from m/z 146 to m/z 87 in MS/MS imaging, ACh could be visualized with a high S/N ratio. Furthermore, we found that in situ freezing method of brain samples improved IMS data quality in terms of the number of effective pixels and the image contrast (i.e., the sensitivity and dynamic range). Therefore, by addressing the aforementioned problems, we demonstrated the tissue distribution of ACh, the most suitable molecular specimen for positive ion detection by IMS, to reveal its localization in central nervous system tissues.
Collapse
|
17
|
Surrogate based accurate quantification of endogenous acetylcholine in murine brain by hydrophilic interaction liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3927-31. [DOI: 10.1016/j.jchromb.2011.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/10/2011] [Accepted: 09/12/2011] [Indexed: 12/23/2022]
|
18
|
Development and validation of a sample stabilization strategy and a UPLC–MS/MS method for the simultaneous quantitation of acetylcholine (ACh), histamine (HA), and its metabolites in rat cerebrospinal fluid (CSF). J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2023-33. [DOI: 10.1016/j.jchromb.2011.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 11/24/2022]
|