1
|
Peng RHT, He D, James SA, Williamson JN, Skadden C, Jain S, Hassaneen W, Miranpuri A, Kaur A, Sarol JN, Yang Y. Determining the effects of targeted high-definition transcranial direct current stimulation on reducing post-stroke upper limb motor impairments-a randomized cross-over study. Trials 2024; 25:34. [PMID: 38195605 PMCID: PMC10775560 DOI: 10.1186/s13063-023-07886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Stroke is one of the leading causes of death in the USA and is a major cause of serious disability for adults. This randomized crossover study examines the effect of targeted high-definition transcranial direct current transcranial brain stimulation (tDCS) on upper extremity motor recovery in patients in the post-acute phase of stroke recovery. METHODS This randomized double-blinded cross-over study includes four intervention arms: anodal, cathodal, and bilateral brain stimulation, as well as a placebo stimulation. Participants receive each intervention in a randomized order, with a 2-week washout period between each intervention. The primary outcome measure is change in Motor Evoked Potential. Secondary outcome measures include the Fugl-Meyer Upper Extremity (FM-UE) score, a subset of FM-UE (A), related to the muscle synergies, and the Modified Ashworth Scale. DISCUSSION We hypothesize that anodal stimulation to the ipsilesional primary motor cortex will increase the excitability of the damaged cortico-spinal tract, reducing the UE flexion synergy and enhancing UE motor function. We further hypothesize that targeted cathodal stimulation to the contralesional premotor cortex will decrease activation of the cortico-reticulospinal tract (CRST) and the expression of the upper extremity (UE) flexion synergy and spasticity. Finally, we hypothesize bilateral stimulation will achieve both results simultaneously. Results from this study could improve understanding of the mechanism behind motor impairment and recovery in stroke and perfect the targeting of tDCS as a potential stroke intervention. With the use of appropriate screening, we anticipate no ethical or safety concerns. We plan to disseminate these research results to journals related to stroke recovery, engineering, and medicine. TRIAL REGISTRATION ClinicalTrials.gov NCT05479006 . Registered on 26 July 2022.
Collapse
Affiliation(s)
- Rita Huan-Ting Peng
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Urbana, IL, USA
| | - Dorothy He
- The University of Oklahoma College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shirley A James
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan N Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Sanjiv Jain
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amandeep Kaur
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jesus N Sarol
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Foundation Hospital, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Corticospinal excitability during motor preparation of upper extremity reaches reflects flexor muscle synergies: A novel principal component-based motor evoked potential analyses. Restor Neurol Neurosci 2024; 42:121-138. [PMID: 38607772 DOI: 10.3233/rnn-231367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Background Previous research has shown that noninvasive brain stimulation can be used to study how the central nervous system (CNS) prepares the execution of a motor task. However, these previous studies have been limited to a single muscle or single degree of freedom movements (e.g., wrist flexion). It is currently unclear if the findings of these studies generalize to multi-joint movements involving multiple muscles, which may be influenced by kinematic redundancy and muscle synergies. Objective The objective of this study was to characterize corticospinal excitability during motor preparation in the cortex prior to functional upper extremity reaches. Methods 20 participants without neurological impairments volunteered for this study. During the experiment, the participants reached for a cup in response to a visual "Go Cue". Prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in motor evoked potentials (MEPs) in several upper extremity muscles. We varied each participant's initial arm posture and used a novel synergy-based MEP analysis to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the Go Cue and movement onset to examine the time course of motor preparation. Results We found that synergies with strong proximal muscle (shoulder and elbow) components emerged as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated. We also found that synergies varied with arm posture in a manner that reflected the muscle coordination of the reach. Conclusions We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
Affiliation(s)
- Thomas E Augenstein
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
| | - Seonga Oh
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | - Trevor A Norris
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Amit Sethi
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Williamson JN, James SA, He D, Li S, Sidorov EV, Yang Y. High-definition transcranial direct current stimulation for upper extremity rehabilitation in moderate-to-severe ischemic stroke: a pilot study. Front Hum Neurosci 2023; 17:1286238. [PMID: 37900725 PMCID: PMC10602806 DOI: 10.3389/fnhum.2023.1286238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract (CST) and hyperexcitability of the contralesional cortico-reticulospinal tract (CRST). This proof-of-concept study aims to develop a non-invasive brain stimulation protocol that facilitates the lesioned CST and inhibits the contralesional CRST to improve upper extremity rehabilitation in individuals with moderate-to-severe motor impairments post-stroke. Methods Fourteen individuals (minimum 3 months post ischemic stroke) consented. Physician decision of the participants baseline assessment qualified eight to continue in a randomized, double-blind cross-over pilot trial (ClinicalTrials.gov Identifier: NCT05174949) with: (1) anodal high-definition transcranial direct stimulation (HD-tDCS) over the ipsilesional primary motor cortex (M1), (2) cathodal HD-tDCS over contralesional dorsal premotor cortex (PMd), (3) sham stimulation, with a two-week washout period in-between. Subject-specific MR images and computer simulation were used to guide HD-tDCS and verified by Transcranial Magnetic Stimulation (TMS) induced Motor Evoked Potential (MEP). The motor behavior outcome was evaluated by an Fugl-Meyer Upper Extremity score (primary outcome measure) and the excitability of the ipslesoinal CST and contralesional CRST was determined by the change of MEP latencies and amplitude (secondary outcome measures). Results The baseline ipsilesional M1 MEP latency and amplitude were correlated with FM-UE. FM-UE scores were improved post HD-tDCS, in comparison to sham stimulation. Both anodal and cathodal HD-tDCS reduced the latency of the ipsilesional M1 MEP. The contralesional PMd MEP disappeared/delayed after HD-tDCS. Discussion These results suggest that HD-tDCS could improve the function of the lesioned corticospinal tract and reduce the excitability of the contralesional cortico-reticulospinal tract, thus, improving motor function of the upper extremity in more severely impaired individuals.
Collapse
Affiliation(s)
- Jordan N. Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Shirley A. James
- University of Oklahoma Health Sciences Center, Hudson College of Public Health, Oklahoma City, OK, United States
| | - Dorothy He
- University of Oklahoma Health Sciences Center, College of Medicine, Oklahoma City, OK, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, UT Health Huston, McGovern Medical School, Houston, TX, United States
| | - Evgeny V. Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Gallogly College of Engineering, Stephenson School of Biomedical Engineering, University of Oklahoma, Oklahoma City, OK, United States
| |
Collapse
|
4
|
Altermatt M, Jordan H, Ho K, Byblow WD. Modulation of ipsilateral motor evoked potentials during bimanual coordination tasks. Front Hum Neurosci 2023; 17:1219112. [PMID: 37736146 PMCID: PMC10509758 DOI: 10.3389/fnhum.2023.1219112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction Ipsilateral motor evoked potentials (iMEPs) are difficult to obtain in distal upper limb muscles of healthy participants but give a direct insight into the role of ipsilateral motor control. Methods We tested a new high-intensity double pulse transcranial magnetic stimulation (TMS) protocol to elicit iMEPs in wrist extensor and flexor muscles during four different bimanual movements (cooperative-asymmetric, cooperative-symmetric, non-cooperative-asymmetric and non-cooperative-symmetric) in 16 participants. Results Nine participants showed an iMEP in the wrist extensor in at least 20% of the trials in each of the conditions and were classified as iMEP+ participants. iMEP persistence was greater for cooperative (50.5 ± 28.8%) compared to non-cooperative (31.6 ± 22.1%) tasks but did not differ between asymmetric and symmetric tasks. Area and amplitude of iMEPs were also increased during cooperative (area = 5.41 ± 3.4 mV × ms; amplitude = 1.60 ± 1.09 mV) compared to non-cooperative (area = 3.89 ± 2.0 mV × ms; amplitude = 1.12 ± 0.56 mV) tasks and unaffected by task-symmetry. Discussion The upregulation of iMEPs during common-goal cooperative tasks shows a functional relevance of ipsilateral motor control in bimanual movements. The paired-pulse TMS protocol is a reliable method to elicit iMEPs in healthy participants and can give new information about neural control of upper limb movements. With this work we contribute to the research field in two main aspects. First, we describe a reliable method to elicit ipsilateral motor evoked potentials in healthy participants which will be useful in further advancing research in the area of upper limb movements. Second, we add new insight into the motor control of bimanual movements. We were able to show an upregulation of bilateral control represented by increased ipsilateral motor evoked potentials in cooperative, object-oriented movements compared to separate bimanual tasks. This result might also have an impact on neurorehabilitation after stroke.
Collapse
Affiliation(s)
- Miriam Altermatt
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - Harry Jordan
- Clinical Neuroscience Laboratory, Department of Medicine, The University of Auckland, Auckland, New Zealand
| | - Kelly Ho
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - Winston D. Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Muscle Coordination Matters: Insights into Motor Planning using Corticospinal Responses during Functional Reaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540531. [PMID: 37292868 PMCID: PMC10245565 DOI: 10.1101/2023.05.15.540531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The central nervous system (CNS) moves the human body by forming a plan in the primary motor cortex and then executing this plan by activating the relevant muscles. It is possible to study motor planning by using noninvasive brain stimulation techniques to stimulate the motor cortex prior to a movement and examine the evoked responses. Studying the motor planning process can reveal useful information about the CNS, but previous studies have generally been limited to single degree of freedom movements ( e.g., wrist flexion). It is currently unclear if findings in these studies generalize to multi-joint movements, which may be influenced by kinematic redundancy and muscle synergies. Here, our objective was to characterize motor planning in the cortex prior to a functional reach involving the upper extremity. We asked participants to reach for a cup placed in front of them when presented with a visual "Go Cue". Following the go cue, but prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in the magnitudes of evoked responses in several upper extremity muscles (MEPs). We varied each participant's initial arm posture to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the go cue and movement onset to examine the time course of changes in the MEPs. We found that the MEPs in all proximal (shoulder and elbow) muscles increased as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated or even inhibited. We also found that facilitation varied with arm posture in a manner that reflected the coordination of the subsequent reach. We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
|
6
|
Sherman DA, Baumeister J, Stock MS, Murray AM, Bazett-Jones DM, Norte GE. Weaker Quadriceps Corticomuscular Coherence in Individuals after ACL Reconstruction during Force Tracing. Med Sci Sports Exerc 2023; 55:625-632. [PMID: 36730761 DOI: 10.1249/mss.0000000000003080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE This study aimed to compare quadriceps corticomuscular coherence (CMC) and force steadiness between individuals with anterior cruciate ligament reconstruction (ACLR) and uninjured controls during a force tracing task. METHODS Individuals with ACLR ( n = 20) and controls ( n = 20) performed a knee extension force-control task at 50% of maximal voluntary effort. Electrocortical activity, electromyographic activity, and torque output were recorded concurrently. CMC in beta (13-30 Hz) and gamma (31-80 Hz) frequency bands was assessed using partial directed coherence between the contralateral motor cortex (e.g., C4-C2-Cz electrodes) and the ipsilateral quadriceps muscles (e.g., left vastus medialis and lateralis). Force steadiness was quantified using root-mean-square error and coefficient of variation. Active motor threshold was determined using transcranial magnetic stimulation. Differences between groups (ACLR vs control) and limbs (involved vs uninvolved) were assessed using peak knee extension strength and active motor threshold as a priori covariates. RESULTS Participants with ACLR had lower gamma band connectivity bilaterally when compared with controls (vastus medialis: d = 0.8; vastus lateralis: d = 0.7). Further, the ACLR group demonstrated worse quadriceps force steadiness (root-mean-square error, d = 0.5), lower involved limb quadriceps strength ( d = 1.1), and higher active motor threshold ( d = 1.0) compared with controls. CONCLUSIONS Lower quadriceps gamma band CMC in the ACLR group suggests lower cortical drive (e.g., corticomotor decoupling) to the quadriceps compared with matched controls. Further, the ACLR group demonstrated worse quadriceps force steadiness, suggesting impaired ability to modulate quadriceps neuromuscular control. Notably, CMC differences were present only in the gamma frequency band, suggesting impairments may be specific to multisensory integration and force modulation.
Collapse
Affiliation(s)
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Paderborn, GERMANY
| | - Matt S Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL
| | - Amanda M Murray
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| | - David M Bazett-Jones
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| | - Grant E Norte
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| |
Collapse
|
7
|
Hill NM, Dewald JPA. The Upper Extremity Flexion Synergy Is Minimally Expressed in Young Individuals With Unilateral Cerebral Palsy Following an Early Brain Injury. Front Hum Neurosci 2020; 14:590198. [PMID: 33192425 PMCID: PMC7596321 DOI: 10.3389/fnhum.2020.590198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Hemiparetic stroke in adulthood often results in the grouped movement pattern of the upper extremity flexion synergy thought to arise from an increased reliance on cortico-reticulospinal pathways due to a loss of lateral corticospinal projections. It is well established that the flexion synergy induces reaching constraints in individuals with adult-onset hemiplegia. The expression of the flexion synergy in individuals with brain injuries onset earlier in the lifespan is currently unknown. An early unilateral brain injury occurring prior to six months post full-term may preserve corticospinal projections which can be used for independent joint control and thus minimizing the expression of the flexion synergy. This study uses kinematics of a ballistic reaching task to evaluate the expression of the flexion synergy in individuals with pediatric hemiplegia (PH) ages six to seventeen years. Fifteen individuals with brain injuries before birth (n = 8) and around full-term (n = 7) and nine age-matched controls with no known neurological impairment completed a set of reaches in an admittance controlled robotic device. Descending drive, and the possible expression of the upper extremity flexion synergy, was modulated by increasing shoulder abduction loading. Individuals with early-onset PH achieved lower peak velocities when reaching with the paretic arm compared to controls; however, no differences in reaching distance were found between groups. Relative maintenance in reaching seen in individuals with early brain injuries highlights minimal expression of the flexion synergy. We interpret this conservation of independent control of the paretic shoulder and elbow as the use of more direct corticospinal projections instead of indirect cortico-reticulospinal pathways used in individuals with adult-onset hemiplegia.
Collapse
Affiliation(s)
- Nayo M Hill
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Leão MT, Naros G, Gharabaghi A. Detecting poststroke cortical motor maps with biphasic single- and monophasic paired-pulse TMS. Brain Stimul 2020; 13:1102-1104. [PMID: 32418913 DOI: 10.1016/j.brs.2020.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Residual corticospinal connections are the precondition for poststroke motor recovery and necessary for targeted interventions. In severely affected patients, standard transcranial magnetic stimulation (TMS) may lead to false negative findings. OBJECTIVE Detecting the cortical representation of paralyzed forearm muscles by applying different stimulation techniques and maps beyond the hotspot. METHODS In seventeen chronic stroke patients with severe motor deficits, navigated biphasic single (SP) and monophasic paired-pulse (PP) TMS was applied at 100% stimulator output to an extended cortical area in the ipsilesional hemisphere, while recording surface EMG of the extensor carpi radialis muscle. RESULTS In eleven patients, residual connectivity to the paralyzed forearm was detected with either mapping technique (five SP and PP, four PP only, two SP only). In five patients, connections originated from non-primary motor areas. CONCLUSION These results could be instrumental for identifying candidates and stimulation targets for novel neuromodulation interventions in the context of neurorehabilitation.
Collapse
Affiliation(s)
- Maria Teresa Leão
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tuebingen NeuroCampus, University of Tuebingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tuebingen NeuroCampus, University of Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, And Tuebingen NeuroCampus, University of Tuebingen, Germany.
| |
Collapse
|
9
|
Yang Y, Sinha N, Tian R, Gurari N, Drogos JM, Dewald JPA. Quantifying Altered Neural Connectivity of the Stretch Reflex in Chronic Hemiparetic Stroke. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1436-1441. [PMID: 32275603 DOI: 10.1109/tnsre.2020.2986304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Post-stroke flexion synergy limits arm/hand function and is also linked to hyperactive stretch reflexes or spasticity. It is implicated in the increased role of indirect motor pathways following damage to direct corticospinal projections. We hypothesized that this maladaptive neuroplasticity also affects stretch reflexes. Specifically, multi-synaptic interactions in indirect motor pathways may increase nonlinear neural connectivity and time lag between stretch and reflex muscle response. Continuous position perturbations were applied to the elbow joint when eleven participants with stroke generated two levels of shoulder abduction (SABD) torques with their paretic arm to induce synergy-related spasticity. Likewise, the perturbations were applied to eleven control subjects while performing SABD and elbow flexion levels matching the synergy torques in stroke. We quantified linear and non-linear connectivity and the corresponding time lags between perturbations and muscle activity. Enhanced nonlinear connectivity with a prolonged time lag was found in stroke as compared to controls. Non-linear connectivity and time lag also increased with the expression of the flexion synergy, as induced by greater SABD load levels, in stroke. This study provides new evidence of changes in neural connectivity and long-latency time lag in the stretch reflex response post-stroke. The results suggest the contribution of indirect motor pathways to synergy-related spasticity.
Collapse
|
10
|
Cirillo J, Mooney RA, Ackerley SJ, Barber PA, Borges VM, Clarkson AN, Mangold C, Ren A, Smith MC, Stinear CM, Byblow WD. Neurochemical balance and inhibition at the subacute stage after stroke. J Neurophysiol 2020; 123:1775-1790. [PMID: 32186435 DOI: 10.1152/jn.00561.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stroke is a leading cause of death and disability worldwide with many people left with impaired motor function. Evidence from experimental animal models of stroke indicates that reducing motor cortex inhibition may facilitate neural plasticity and motor recovery. This study compared primary motor cortex (M1) inhibition measures over the first 12 wk after stroke with a cohort of age-similar healthy controls. The excitation-inhibition ratio and gamma-aminobutyric acid (GABA) neurotransmission within M1 were assessed using magnetic resonance spectroscopy and threshold hunting paired-pulse transcranial magnetic stimulation respectively. Upper limb impairment and function were assessed with the Fugl-Meyer Upper Extremity Scale and Action Research Arm Test. Patients with a functional corticospinal pathway had motor-evoked potentials on the paretic side and exhibited better recovery from upper limb impairment and recovery of function than patients without a functional corticospinal pathway. Compared with age-similar controls, the neurochemical balance in terms of the excitation-inhibition ratio was greater within contralesional M1 in patients with a functional corticospinal pathway. There was evidence for elevated long-interval inhibition in both ipsilesional and contralesional M1 compared with controls. Short-interval inhibition measures differed between the first and second phases, with evidence for elevation of the former only in ipsilesional M1 and no evidence of disinhibition for the latter. Overall, findings from transcranial magnetic stimulation indicate an upregulation of GABA-mediated tonic inhibition in M1 early after stroke. Therapeutic approaches that aim to normalize inhibitory tone during the subacute period warrant further investigation.NEW & NOTEWORTHY Magnetic resonance spectroscopy indicated higher excitation-inhibition ratios within motor cortex during subacute recovery than age-similar healthy controls. Measures obtained from adaptive threshold hunting paired-pulse transcranial magnetic stimulation indicated greater tonic inhibition in patients compared with controls. Therapeutic approaches that aim to normalize motor cortex inhibition during the subacute stage of recovery should be explored.
Collapse
Affiliation(s)
- John Cirillo
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Ronan A Mooney
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Suzanne J Ackerley
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| | - P Alan Barber
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Victor M Borges
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Christine Mangold
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - April Ren
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Marie-Claire Smith
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Cathy M Stinear
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Sinha N, Dewald JPA, Heckman CJ, Yang Y. Cross-Frequency Coupling in Descending Motor Pathways: Theory and Simulation. Front Syst Neurosci 2020; 13:86. [PMID: 31992973 PMCID: PMC6971171 DOI: 10.3389/fnsys.2019.00086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022] Open
Abstract
Coupling of neural oscillations is essential for the transmission of cortical motor commands to motoneuron pools through direct and indirect descending motor pathways. Most studies focus on iso-frequency coupling between brain and muscle activities, i.e., cortico-muscular coherence, which is thought to reflect motor command transmission in the mono-synaptic corticospinal pathway. Compared to this direct pathway, indirect corticobulbospinal motor pathways involve multiple intermediate synaptic connections via spinal interneurons. Neuronal processing of synaptic inputs can lead to modulation of inter-spike intervals which produces cross-frequency coupling. This theoretical study aims to evaluate the effect of the number of synaptic layers in descending pathways on the expression of cross-frequency coupling between supraspinal input and the cumulative output of the motoneuron pool using a computer simulation. We simulated descending pathways as various layers of interneurons with a terminal motoneuron pool using Hogdkin–Huxley styled neuron models. Both cross- and iso-frequency coupling between the supraspinal input and the motorneuron pool output were computed using a novel generalized coherence measure, i.e., n:m coherence. We found that the iso-frequency coupling is only dominant in the mono-synaptic corticospinal tract, while the cross-frequency coupling is dominant in multi-synaptic indirect motor pathways. Furthermore, simulations incorporating both mono-synaptic direct and multi-synaptic indirect descending pathways showed that increased reliance on a multi-synaptic indirect pathway over a mono-synaptic direct pathway enhances the dominance of cross-frequency coupling between the supraspinal input and the motorneuron pool output. These results provide the theoretical basis for future human subject study quantitatively assessing motor command transmission in indirect vs. direct pathways and its changes after neurological disorders such as unilateral brain injury.
Collapse
Affiliation(s)
- Nirvik Sinha
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
12
|
Li R, Potter T, Wang J, Shi Z, Wang C, Yang L, Chan R, Zhang Y. Cortical Hemodynamic Response and Connectivity Modulated by Sub-threshold High-Frequency Repetitive Transcranial Magnetic Stimulation. Front Hum Neurosci 2019; 13:90. [PMID: 30941025 PMCID: PMC6434517 DOI: 10.3389/fnhum.2019.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) at sub-threshold intensity is a viable clinical strategy to enhance the sensory and motor functions of extremities by increasing or decreasing motor cortical excitability. Despite this, it remains unclear how sub-threshold rTMS modulates brain cortical excitability and connectivity. In this study, we applied functional near-infrared spectroscopy (fNIRS) to investigate the alterations in hemodynamic responses and cortical connectivity patterns that are induced by high-frequency rTMS at a sub-threshold intensity. Forty high-frequency (10 Hz) trains of rTMS at 90% resting motor threshold (RMT) were delivered through a TMS coil placed over 1–2 cm lateral from the vertex. fNIRS signals were acquired from the frontal and bilateral motor areas in healthy volunteers (n = 20) during rTMS administration and at rest. A significant reduction in oxygenated hemoglobin (HbO) concentration was observed in most defined regions of interest (ROIs) during the stimulation period (p < 0.05). Decreased functional connectivity within prefrontal areas as well as between symmetrical ROI-pairs was also observed in most participants during the stimulation (p < 0.05). Results suggest that fNIRS imaging is able to provide a reliable measure of regional cortical brain activation that advances our understanding of the manner in which sub-threshold rTMS affects cortical excitability and brain connectivity.
Collapse
Affiliation(s)
- Rihui Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Thomas Potter
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Jun Wang
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Zhixi Shi
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Chushan Wang
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Lingling Yang
- Department of Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Rosa Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
13
|
Winstein C, Varghese R. Been there, done that, so what’s next for arm and hand rehabilitation in stroke? NeuroRehabilitation 2018; 43:3-18. [DOI: 10.3233/nre-172412] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Carolee Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Rini Varghese
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
McPherson JG, Chen A, Ellis MD, Yao J, Heckman CJ, Dewald JPA. Progressive recruitment of contralesional cortico-reticulospinal pathways drives motor impairment post stroke. J Physiol 2018; 596:1211-1225. [PMID: 29457651 DOI: 10.1113/jp274968] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control. ABSTRACT A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.
Collapse
Affiliation(s)
- Jacob G McPherson
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2600, Miami, FL, 33174, USA
| | - Albert Chen
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael D Ellis
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Jun Yao
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - C J Heckman
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physiology, Northwestern University, 303 East Chicago Ave, M211, Chicago, IL, 60611, USA
| | - Julius P A Dewald
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
15
|
Yang Y, Dewald JPA, van der Helm FCT, Schouten AC. Unveiling neural coupling within the sensorimotor system: directionality and nonlinearity. Eur J Neurosci 2017; 48:2407-2415. [PMID: 28887885 PMCID: PMC6221113 DOI: 10.1111/ejn.13692] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Neural coupling between the central nervous system and the periphery is essential for the neural control of movement. Corticomuscular coherence is a popular linear technique to assess synchronised oscillatory activity in the sensorimotor system. This oscillatory coupling originates from ascending somatosensory feedback and descending motor commands. However, corticomuscular coherence cannot separate this bidirectionality. Furthermore, the sensorimotor system is nonlinear, resulting in cross‐frequency coupling. Cross‐frequency oscillations cannot be assessed nor exploited by linear measures. Here, we emphasise the need of novel coupling measures, which provide directionality and acknowledge nonlinearity, to unveil neural coupling in the sensorimotor system. We highlight recent advances in the field and argue that assessing directionality and nonlinearity of neural coupling will break new ground in the study of the control of movement in healthy and neurologically impaired individuals.
Collapse
Affiliation(s)
- Yuan Yang
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Julius P A Dewald
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick school of Engineering, Northwestern University, Evanston, IL, USA
| | - Frans C T van der Helm
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alfred C Schouten
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
16
|
Owen M, Ingo C, Dewald JPA. Upper Extremity Motor Impairments and Microstructural Changes in Bulbospinal Pathways in Chronic Hemiparetic Stroke. Front Neurol 2017; 8:257. [PMID: 28659855 PMCID: PMC5468392 DOI: 10.3389/fneur.2017.00257] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Following hemiparetic stroke, precise, individuated control of single joints is often replaced by highly stereotyped patterns of multi-joint movement, or abnormal limb synergies, which can negatively impact functional use of the paretic arm. One hypothesis for the expression of these synergies is an increased dependence on bulbospinal pathways such as the rubrospinal (RubST) tract and especially the reticulospinal (RetST) tracts, which co-activate multiple muscles of the shoulder, elbow, wrist, and fingers. Despite indirect evidence supporting this hypothesis in humans poststroke, it still remains unclear whether it is correct. Therefore, we used high-resolution diffusion tensor imaging (DTI) to quantify white matter microstructure in relation to severity of arm synergy and hand-related motor impairments. DTI was performed on 19 moderately to severely impaired chronic stroke individuals and 15 healthy, age-matched controls. In stroke individuals, compared to controls, there was significantly decreased fractional anisotropy (FA) and significantly increased axial and radial diffusivity in bilateral corona radiata and body of the corpus callosum. Furthermore, poststroke, the contralesional (CL) RetST FA correlated significantly with both upper extremity (UE) synergy severity (r = -0.606, p = 0.003) and hand impairment (r = -0.609, p = 0.003). FA in the ipsilesional RubST significantly correlated with hand impairment severity (r = -0.590, p = 0.004). For the first time, we separately evaluate RetST and RubST microstructure in chronic stroke individuals with UE motor impairment. We demonstrate that individuals with the greatest UE synergy severity and hand impairments poststroke have the highest FA in the CL RetST a pattern consistent with increased myelination and suggestive of neuroplastic reorganization. Since the RetST pathway microstructure, in particular, is sensitive to abnormal joint coupling and hand-related motor impairment in chronic stroke, it could help test the effects of specific, and novel, anti-synergy neurorehabilitation interventions for recovery from hemiparesis.
Collapse
Affiliation(s)
- Meriel Owen
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, United States
| | - Carson Ingo
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
17
|
Lan Y, Yao J, Dewald JP. The Impact of Shoulder Abduction Loading on Volitional Hand Opening and Grasping in Chronic Hemiparetic Stroke. Neurorehabil Neural Repair 2017; 31:521-529. [PMID: 28506146 PMCID: PMC5505320 DOI: 10.1177/1545968317697033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Up to 60% of individuals with moderate to severe chronic hemiparetic stroke experience excessive involuntary wrist/finger flexion that constrains functional hand movements including hand opening. It's not known how stroke-induced brain injury impacts volitional hand opening and grasping forces as a result of the expression of abnormal coupling between shoulder abduction and wrist/finger flexion or the flexion synergy. OBJECTIVE The goal of this study is to understand how shoulder abduction loading affects volitional hand opening and grasping forces in individuals with moderate to severe chronic hemiparetic stroke. METHODS Thirty-six individuals (stroke, 26; control, 10) were recruited for this study. Each participant was instructed to perform maximal hand opening and grasping forces while the arm was either fully supported or lifted with a weight equal to 25% or 50% of the participant's maximal shoulder abduction torque. Hand pentagon area, defined as the area formed by the tips of thumb and fingers, was calculated during hand opening. Forces were recorded during grasping. RESULTS In individuals with moderate stroke, increasing shoulder abduction loading reduced the ability to maximally open the hand. In individuals with severe stroke, who were not able to open the hand, grasping forces were generated and increased with shoulder abduction loading. Stroke individuals also showed a reduced ability to control volitional grasping forces due to the enhanced expression of flexion synergy. CONCLUSIONS Shoulder abduction loading reduced the ability to volitionally open the hand and control grasping forces after stroke. Neural mechanisms and clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Yiyun Lan
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, 60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, 60611
| | - Jun Yao
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, 60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, 60611
| | - Julius P.A. Dewald
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, 60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, 60611
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611
| |
Collapse
|
18
|
Chang WH, Uhm KE, Shin YI, Pascual-Leone A, Kim YH. Factors influencing the response to high-frequency repetitive transcranial magnetic stimulation in patients with subacute stroke. Restor Neurol Neurosci 2016; 34:747-55. [PMID: 27372515 DOI: 10.3233/rnn-150634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE High-frequency repetitive transcranial magnetic stimulation (rTMS) aids motor recovery in patients with subacute stroke. However, the response to high-frequency rTMS is highly variable between patients. The aim of this study was to identify the factors associated with improved motor function in response to high-frequency rTMS in subacute stroke patients with moderate to severe upper extremity motor involvement. METHODS Sixty-two patients with subacute stroke were enrolled. rTMS was applied over the primary motor cortex of the affected hemisphere at 10 Hz with 1,000 pulses/day for 10 days. Upper limb motor function was scored with the upper limb of Fugl-Meyer Assessment (FMA-UL) score before intervention and immediately after intervention. All FMA-UL changes greater than or equal to 5 points were considered clinically significant. Potential influencing factors considered included patient characteristics, motor function, corticospinal tract (CST) integrity assessments, and genetics. Multivariate logistic regression analysis was used to identify the significance of each of these factors. RESULTS We found that the two factors with the greatest impact on the improvement in FMA-UL score were: 1) the functional integrity of the CST, and 2) the brain-derived neurotrophic factor (BDNF) genotype (p < 0.05). Age tended to influence clinically significant changes in the FMA-UL score, although this effect was not significant. CONCLUSION Our findings suggest that high-frequency rTMS interventions aimed at improving upper extremity motor function in patients with subacute stroke with moderate to severe motor involvement should be individually tailored according to functional CST status and BDNF genotype.
Collapse
Affiliation(s)
- Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyeong Eun Uhm
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan, Korea
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Science and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
19
|
McCambridge AB, Stinear JW, Byblow WD. Are ipsilateral motor evoked potentials subject to intracortical inhibition? J Neurophysiol 2016; 115:1735-9. [PMID: 26792890 DOI: 10.1152/jn.01139.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/13/2016] [Indexed: 11/22/2022] Open
Abstract
Paired-pulse transcranial magnetic stimulation (TMS) can be used to examine intracortical inhibition in primary motor cortex (M1), termed short-interval intracortical inhibition (SICI). To our knowledge, SICI has only been demonstrated in contralateral motor evoked potentials (MEPs). Ipsilateral MEPs (iMEPs) are assumed to reflect excitability of an uncrossed oligosynaptic pathway, and can sometimes be evoked in proximal upper-limb muscles using high-intensity TMS. We examined whether iMEPs in the biceps brachii (BB) would be suppressed by subthreshold conditioning, therefore demonstrating SICI of iMEPs. TMS was delivered to the dominant M1 to evoke conditioned (C) and nonconditioned (NC) iMEPs in the nondominant BB of healthy participants during weak bilateral elbow flexion. The conditioning stimulus intensities tested were 85%, 100%, and 115% of active motor threshold (AMT), at 2 ms and 4 ms interstimulus intervals (ISI). The iMEP ratio (C/NC) was calculated for each condition to assess the amount of inhibition. Inhibition of iMEPs was present at 2 ms ISI with 100% and 115% AMT (bothP< 0.03), mediated by a reduction in persistence and size (allP< 0.05). To our knowledge, this is the first demonstration of SICI of iMEPs. This technique may be useful as a tool to better understand the role of ipsilateral M1 during functional motor tasks.
Collapse
Affiliation(s)
- Alana B McCambridge
- Movement Neuroscience Laboratory, Department of Exercise Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - James W Stinear
- Movement Neuroscience Laboratory, Department of Exercise Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Yao J, Drogos J, Veltink F, Anderson C, Concha Urday Zaa J, Hanson LI, Dewald JPA. The effect of transcranial direct current stimulation on the expression of the flexor synergy in the paretic arm in chronic stroke is dependent on shoulder abduction loading. Front Hum Neurosci 2015; 9:262. [PMID: 26029081 PMCID: PMC4426705 DOI: 10.3389/fnhum.2015.00262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/22/2015] [Indexed: 11/13/2022] Open
Abstract
Reaching ability of the paretic upper extremity in individuals with stroke decreases with increased shoulder abduction (SABD) loads. Transcranial direct current stimulation (tDCS) has been implemented to improve movement ability following stroke. However, results from previous studies vary, perhaps due to the influence of impairment level and the type of motor tasks that were used to study the effects of tDCS. This study specifically examines the impact of SABD loading on the effects of tDCS in 9 individuals with moderate to severe chronic stroke. In 3 different sessions, participants repeated a reaching assessment with various SABD loads (supported on a haptic table, 25%, and 50% of maximum voluntary SABD torque) in random order, pre and post one of the following 15-min tDCS protocols: anodal stimulation of lesioned M1, cathodal stimulation of non-lesioned M1, or anodal stimulation of non-lesioned M1. Sham stimulation was also conducted preceding one of the tDCS sessions. The averaged maximum reaching distance over valid trials was calculated for each condition. We observed significant interactions between SABD load, tDCS protocol and time (i.e., pre or post-tDCS). Post hoc test showed that anodal stimulation of the lesioned M1 caused a clear trend (p = 0.058) of increasing the reaching ability at a medium level of SABD loading (25%), but not for higher loads (50%). This suggests that anodal stimulation increases residual corticospinal tract activity, which successfully increases reaching ability at moderate loads; however, is insufficient to make significant changes at higher SABD loads. We also found that cathodal stimulation of the non-lesioned M1 significantly (p = 0.018) decreased the reaching distance at a high level of SABD loading (50%). This study demonstrated, for the first time, that the effect of tDCS on the reaching ability is dependent on SABD loads in individuals with moderate to severe stroke.
Collapse
Affiliation(s)
- Jun Yao
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Chicago, IL, USA
| | - Justin Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Chicago, IL, USA
| | - Fleur Veltink
- The Medical Faculty of the Radboud University Nijmegen, Netherlands
| | - Caitlyn Anderson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Chicago, IL, USA
| | - Janny Concha Urday Zaa
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Chicago, IL, USA
| | - Laura Imming Hanson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Chicago, IL, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Chicago, IL, USA ; Department of Biomedical Engineering, Northwestern University Chicago, IL, USA ; Department of Physical Medicine and Rehabilitation, Northwestern University Chicago, IL, USA
| |
Collapse
|
21
|
McCambridge AB, Stinear JW, Byblow WD. A dissociation between propriospinal facilitation and inhibition after bilateral transcranial direct current stimulation. J Neurophysiol 2014; 111:2187-95. [DOI: 10.1152/jn.00879.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Propriospinal premotoneurons (PN) are essential for accurate control of the upper limb. They receive bilateral input from premotor (PM) and primary motor (M1) cortices. In humans, excitability of PNs can be estimated from motor-evoked potentials (MEPs) by pairing a descending volley using transcranial magnetic stimulation (TMS) to summate with an ascending volley from peripheral nerve stimulation at the C3–C4 level of the spinal cord. Transcranial direct current stimulation (tDCS) alters excitability of cortical and subcortical areas. A recent study demonstrated that cathodal tDCS can suppress facilitatory (FAC) and inhibitory (INH) components of PN excitability, presumably via effects on corticoreticulospinal neurons (Bradnam LV, Stinear CM, Lewis GN, Byblow WD. J Neurophysiol 103: 2382–2389, 2010). The present study investigated the effects of bilateral tDCS with healthy subjects. The cathode was placed over left dorsal PM or M1 and the anode over right M1 in separate sessions (PM-M1, M1-M1, or Sham). TMS of right M1 elicited MEPs in left biceps brachii across a range of TMS intensities chosen to examine PN-mediated FAC and INH. Conditioning was applied using median nerve stimulation with an interstimulus interval that coincided with TMS and peripheral volleys summating at the C3–C4 level. All participants showed FAC at TMS intensities near active motor threshold and INH at slightly higher intensities. After tDCS, FAC was reduced for M1-M1 compared with Sham but not after PM-M1 stimulation. Contrary to an earlier study with cathodal tDCS, INH was unchanged across all sessions. The difference between these and earlier findings may relate to dual- vs. single-hemisphere M1 stimulation. M1-M1 tDCS may be a useful adjuvant to techniques that aim to reduce upper limb impairment after stroke.
Collapse
Affiliation(s)
- Alana B. McCambridge
- Movement Neuroscience Laboratory, The University of Auckland, Auckland, New Zealand; and
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - James W. Stinear
- Movement Neuroscience Laboratory, The University of Auckland, Auckland, New Zealand; and
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Winston D. Byblow
- Movement Neuroscience Laboratory, The University of Auckland, Auckland, New Zealand; and
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Mahayana IT, Sari DCR, Chen CY, Juan CH, Muggleton NG. The potential of transcranial magnetic stimulation for population-based application: a region-based illustrated brief overview. Int J Neurosci 2014; 124:717-23. [PMID: 24392811 DOI: 10.3109/00207454.2013.872641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Ellis MD, Drogos J, Carmona C, Keller T, Dewald JPA. Neck rotation modulates flexion synergy torques, indicating an ipsilateral reticulospinal source for impairment in stroke. J Neurophysiol 2012; 108:3096-104. [PMID: 22956793 DOI: 10.1152/jn.01030.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of reticular formation excitability on maximum voluntary torque (MVT) generation and associated muscle activation at the shoulder and elbow was investigated through natural elicitation (active head rotation) of the asymmetric tonic neck reflex (ATNR) in 26 individuals with stroke and 9 age-range-matched controls. Isometric MVT generation at the shoulder and elbow was quantified with the head rotated (face pointing) contralateral and ipsilateral to the paretic (stroke) and dominant (control) arm. Given the dominance of abnormal torque coupling of elbow flexion with shoulder abduction (flexion synergy) in stroke and well-developed animal models demonstrating a linkage between reticular formation and ipsilateral elbow flexors and shoulder abductors, we hypothesized that constituent torques of flexion synergy, specifically elbow flexion and shoulder abduction, would increase with contralateral head rotation. The findings of this investigation support this hypothesis. Increases in MVT for three of four flexion synergy constituents (elbow flexion, shoulder abduction, and shoulder external rotation) were observed during contralateral head rotation only in individuals with stroke. Electromyographic data of the associated muscle coactivations were nonsignificant but are presented for consideration in light of a likely underpowered statistical design for this specific variable. This study not only provides evidence for the reemergence of ATNR following stroke but also indicates a common neuroanatomical link, namely, an increased reliance on ipsilateral reticulospinal pathways, as the likely mechanism underlying the expression of both ATNR and flexion synergy that results in the loss of independent joint control.
Collapse
Affiliation(s)
- Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| | | | | | | | | |
Collapse
|
24
|
Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin Neurophysiol 2012; 123:1216-25. [PMID: 22364723 DOI: 10.1016/j.clinph.2012.01.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/09/2012] [Accepted: 01/13/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Clinical observations of the flexion synergy in individuals with chronic hemiparetic stroke describe coupling of shoulder, elbow, wrist, and finger joints. Yet, experimental quantification of the synergy within a shoulder abduction (SABD) loading paradigm has focused only on shoulder and elbow joints. The paretic wrist and fingers have typically been studied in isolation. Therefore, this study quantified involuntary behavior of paretic wrist and fingers during concurrent activation of shoulder and elbow. METHODS Eight individuals with chronic moderate-to-severe hemiparesis and four controls participated. Isometric wrist/finger and thumb flexion forces and wrist/finger flexor and extensor electromyograms (EMG) were measured at two positions when lifting the arm: in front of the torso and at maximal reaching distance. The task was completed in the ACT(3D) robotic device with six SABD loads by paretic, non-paretic, and control limbs. RESULTS Considerable forces and EMG were generated during lifting of the paretic arm only, and they progressively increased with SABD load. Additionally, the forces were greater at the maximal reach position than at the position front of the torso. CONCLUSIONS Flexion of paretic wrist and fingers is involuntarily coupled with certain shoulder and elbow movements. SIGNIFICANCE Activation of the proximal upper limb must be considered when seeking to understand, rehabilitate, or develop devices to assist the paretic hand.
Collapse
|
25
|
Bibliography Current World Literature. CURRENT ORTHOPAEDIC PRACTICE 2012. [DOI: 10.1097/bco.0b013e3182434f58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|