1
|
Wu Z, Gu H, Hong R, Xing Z, Zhang Z, Peng K, He Y, Xie L, Zhang J, Gao Y, Jin Y, Su X, Zhi H, Guan Q, Pan L, Jin L. Kinect-based objective evaluation of bradykinesia in patients with Parkinson's disease. Digit Health 2023; 9:20552076231176653. [PMID: 37223774 PMCID: PMC10201004 DOI: 10.1177/20552076231176653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
Objective To quantify bradykinesia in Parkinson's disease (PD) with a Kinect depth camera-based motion analysis system and to compare PD and healthy control (HC) subjects. Methods Fifty PD patients and twenty-five HCs were recruited. The Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) was used to evaluate the motor symptoms of PD. Kinematic features of five bradykinesia-related motor tasks were collected using Kinect depth camera. Then, kinematic features were correlated with the clinical scales and compared between groups. Results Significant correlations were found between kinematic features and clinical scales (P < 0.05). Compared with HCs, PD patients exhibited a significant decrease in the frequency of finger tapping (P < 0.001), hand movement (P < 0.001), hand pronation-supination movements (P = 0.005), and leg agility (P = 0.003). Meanwhile, PD patients had a significant decrease in the speed of hand movements (P = 0.003) and toe tapping (P < 0.001) compared with HCs. Several kinematic features exhibited potential diagnostic value in distinguishing PD from HCs with area under the curve (AUC) ranging from 0.684-0.894 (P < 0.05). Furthermore, the combination of motor tasks exhibited the best diagnostic value with the highest AUC of 0.955 (95% CI = 0.913-0.997, P < 0.001). Conclusion The Kinect-based motion analysis system can be applied to evaluate bradykinesia in PD. Kinematic features can be used to differentiate PD patients from HCs and combining kinematic features from different motor tasks can significantly improve the diagnostic value.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongkai Gu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ronghua Hong
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziwen Xing
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoyu Zhang
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kangwen Peng
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijing He
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ludi Xie
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingxing Zhang
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yichen Gao
- IFLYTEK Suzhou Research Institute, Suzhou, China
| | - Yue Jin
- IFLYTEK Suzhou Research Institute, Suzhou, China
| | - Xiaoyun Su
- IFLYTEK Suzhou Research Institute, Suzhou, China
| | - Hongping Zhi
- IFLYTEK Suzhou Research Institute, Suzhou, China
| | - Qiang Guan
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lizhen Pan
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Hand Pronation–Supination Movement as a Proxy for Remotely Monitoring Gait and Posture Stability in Parkinson’s Disease. SENSORS 2022; 22:s22051827. [PMID: 35270972 PMCID: PMC8915024 DOI: 10.3390/s22051827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
The Unified Parkinson’s Disease Rating Scale (UPDRS) is a subjective Parkinson’s Disease (PD) physician scoring/monitoring system. To date, there is no single upper limb wearable/non-contact system that can be used objectively to assess all UPDRS-III motor system subgroups (i.e., tremor (T), rigidity (R), bradykinesia (B), gait and posture (GP), and bulbar anomalies (BA)). We evaluated the use of a non-contact hand motion tracking system for potential extraction of GP information using forearm pronation–supination (P/S) motion parameters (speed, acceleration, and frequency). Twenty-four patients with idiopathic PD participated, and their UPDRS data were recorded bilaterally by physicians. Pearson’s correlation, regression analyses, and Monte Carlo validation was conducted for all combinations of UPDRS subgroups versus motion parameters. In the 262,125 regression models that were trained and tested, the models within 1% of the lowest error showed that the frequency of P/S contributes to approximately one third of all models; while speed and acceleration also contribute significantly to the prediction of GP from the left-hand motion of right handed patients. In short, the P/S better indicated GP when performed with the non-dominant hand. There was also a significant negative correlation (with medium to large effect size, range: 0.3–0.58) between the P/S speed and the single BA score for both forearms and combined UPDRS score for the dominant hand. This study highlights the potential use of wearable or non-contact systems for forearm P/S to remotely monitor and predict the GP information in PD.
Collapse
|
3
|
Intraoperative Quantitative Measurements for Bradykinesia Evaluation during Deep Brain Stimulation Surgery Using Leap Motion Controller: A Pilot Study. PARKINSONS DISEASE 2021; 2021:6639762. [PMID: 34221342 PMCID: PMC8221890 DOI: 10.1155/2021/6639762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/21/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022]
Abstract
Deep brain stimulation (DBS) has shown a remarkably high effectiveness for Parkinson's disease (PD). In many PD patients during DBS surgery, the therapeutic effects of the stimulation test are estimated by assessing changes in bradykinesia as the stimulation voltage is increased. In this study, we evaluated the potential of the leap motion controller (LMC) to quantify the motor component of bradykinesia in PD during DBS surgery, as this could make the intraoperative assessment of bradykinesia more accurate. Seven participants with idiopathic PD receiving chronic bilateral subthalamic nucleus deep brain stimulation (DBS) therapy were recruited. The motor tasks of finger tapping (FT), hand opening and closing (OC), and hand pronation and supination (PS) were selected pre- and intraoperatively in accordance with the Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale. During the test, participants performed these tasks in sequence while being simultaneously monitored by the LMC and two professional clinicians. Key kinematic parameters differed between the preoperative and intraoperative conditions. We suggest that the average velocity ( V ¯ ) and average amplitude ( A ¯ ) of PS isolate the bradykinetic feature from that movement to provide a measure of the intraoperative state of the motor system. The LMC achieved promising results in evaluating PD patients' hand and finger bradykinesia during DBS surgery.
Collapse
|
4
|
Parkinsonian Symptoms, Not Dyskinesia, Negatively Affect Active Life Participation of Dyskinetic Patients with Parkinson's Disease. Tremor Other Hyperkinet Mov (N Y) 2020; 10:20. [PMID: 32775034 PMCID: PMC7394214 DOI: 10.5334/tohm.403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: The impact of slight-to-moderate levodopa-induced dyskinesia (LID) on the level of participation in active life in patients with Parkinson’s disease (PD) has never been objectively determined. Methods: Levels of LID, tremor and bradykinesia were measured during best-ON state in 121 patients diagnosed with PD and having peak-dose LID using inertial sensors positioned on each body limb. Rigidity and postural instability were assessed using clinical evaluations. Cognition and depression were assessed using the MMSE and the GDS-15. Participation in active life was assessed in patients and in 69 healthy controls using the Activity Card Sort (ACS), which measures levels of activity engagement and activities affected by the symptomatology. Outcome measures were compared between patients and controls using ANCOVA, controlling for age or Wilcoxon-Mann-Whitney tests. Spearman correlations and multivariate analyses were then performed between symptomatology and ACS scores. Results: Patients had significantly lower activity engagement than controls and had significantly affected activities. LID was neither associated with activity engagement nor affected activities. Higher levels of tremor, postural instability, cognitive decline and depression were associated with lower activity engagement and higher affected activities. Multivariate analyses revealed that only tremor, postural instability and depression accounted significantly in the variances of these variables. Discussion: Slight-to-moderate LID had little impact compared to other symptoms on the level of participation in active life, suggesting that other symptoms should remain the treatment priority to maintain the level of participation of patients in an active lifestyle.
Collapse
|
5
|
Fundarò C, Cavalieri C, Pinna GD, Giardini A, Mancini F, Casale R. Upper Limb Interactive Weightless Technology-Aided Intervention and Assessment Picks Out Motor Skills Improvement in Parkinson's Disease: A Pilot Study. Front Neurol 2020; 11:40. [PMID: 32117009 PMCID: PMC7033477 DOI: 10.3389/fneur.2020.00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/13/2020] [Indexed: 11/18/2022] Open
Abstract
Background: In Parkinson's disease, reaching movements are conditioned by motor planning and execution deficiency. Recently, rehabilitation, aided by high technological devices, was employed for Parkinson's disease. Objective: We aimed to (1) investigate the changes in the upper limb motor performances in a sample of a patient with Parkinson's disease after a weightless training, with a passive exoskeleton, in an augmented-feedback environment; (2) highlight differences by motor parameters (performance, speed, and movement accuracy) and by type of movement (simple or complex); and (3) evaluate movement improvements by UPDRS II–III. Methods: Observational pilot study. Twenty right-handed patients with Parkinson's disease, Hohen and Yahr 2, Mini Mental State Examination ≥24 were evaluated. All patients underwent 5 day/week sessions for 4 weeks, 30 min for each arm; the training was performed with 12 exercises (single and multi-joints, horizontal and vertical movements). All the patients were assessed by UPDRS II–III and the evaluation tests provided by the device's software: a simple movement, the vertical capture, and a complex movement, the horizontal capture. For each test, we analyzed reached target percentage, movement execution time, and accuracy. Results: After training, a significant improvement of accuracy and speed for simple movement on the dominant arm, of reached targets and speed for complex movement on both sides were shown. UPDRS II and III improved significantly after training. Conclusions: In our study, a motor training aided by a high technological device improves motor parameters and highlights differences between the type of movement (simple or complex) and movement parameters (speed and accuracy) in a sample of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Cira Fundarò
- Neurophysiopathology Unit, Istituti Clinici Scientifici Maugeri, IRCSS, Montescano, Italy
| | - Carlo Cavalieri
- Neuromotory Rehabilitation Unit 1, Istituti Clinici Scientifici Maugeri, IRCSS, Montescano, Italy
| | - Gian Domenico Pinna
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri, IRCSS, Montescano, Italy
| | - Anna Giardini
- Psychology Unit, Istituti Clinici Scientifici Maugeri, IRCSS, Montescano, Italy
| | - Francesca Mancini
- U. O. Neurologia-Stroke Unit e Laboratorio di Neuroscienze, Istituto Auxologico, IRCCS, Milan, Italy
| | - Roberto Casale
- OPUSMedica PC&R, Persons, Care and Research, Piacenza, Italy
| |
Collapse
|
6
|
Goubault E, Nguyen HP, Bogard S, Blanchet PJ, Bézard E, Vincent C, Langlois M, Duval C. Cardinal Motor Features of Parkinson's Disease Coexist with Peak-Dose Choreic-Type Drug-Induced Dyskinesia. JOURNAL OF PARKINSONS DISEASE 2019; 8:323-331. [PMID: 29843253 PMCID: PMC6027941 DOI: 10.3233/jpd-181312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Clinical and anecdotal observations propose that patients with Parkinson’s disease (PD) may show drug-induced dyskinesia (DID) concomitantly with cardinal motor features. However, the extent of the concomitant presence of DID and cardinal features remains to be determined. Objectives: This cross-sectional study measured peak-dose choreic-type DID in a quantitative manner in patients diagnosed with PD, and determined whether symptoms such as tremor, bradykinesia, rigidity, postural instability or freezing of gait (FoG) were still detectable in these patients. Methods: 89 patients diagnosed with PD were recruited and assessed using a combination of quantitative measures using inertial measurement units to capture DID, tremor, bradykinesia, and FoG. Clinical evaluations were also used to assess rigidity and postural instability. Motor symptoms of PD were assessed 3 times during the testing period, and a series of activities of daily living were repeated twice, in between clinical tests, during which the level of DID was quantified. Peak-dose was identified as the period during which patients had the highest levels of DID. Levels of tremor, rigidity, bradykinesia, postural instability, and FoG were used to determine the percentage of patients showing these motor symptoms simultaneously with DID. Results: 72.4% of patients tested presented with measurable DID during the experiment. Rest, postural and kinetic tremor (12.7% , 38.1% , and 15.9% respectively), bradykinesia (28.6% ), rigidity (55.6% ), postural instability (71.4% ) and FoG (9.5% ) were detected simultaneously with DID. Conclusions: PD symptomatology remains present in patients showing peak-dose choreic-type DID, illustrating the challenge facing physicians when trying to avoid dyskinesia while attempting to alleviate motor symptoms.
Collapse
Affiliation(s)
- Etienne Goubault
- Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.,Centre de Recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
| | - Hung P Nguyen
- Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.,Centre de Recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
| | - Sarah Bogard
- Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.,Centre de Recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Québec, Canada
| | - Pierre J Blanchet
- Département de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montréal, QC, Canada.,Département de médecine, CHU Montréal, Montréal, QC, Canada
| | - Erwan Bézard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, F-33000 Bordeaux, France
| | - Claude Vincent
- Département de réadaptation, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Mélanie Langlois
- Département de médecine, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Christian Duval
- Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.,Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Goubault E, Nguyen HP, Bogard S, Blanchet PJ, Bézard E, Vincent C, Sarna J, Monchi O, Duval C. Remnants of Cardinal Symptoms of Parkinson's Disease, Not Dyskinesia, Are Problematic for Dyskinetic Patients Performing Activities of Daily Living. Front Neurol 2019; 10:256. [PMID: 30967832 PMCID: PMC6440171 DOI: 10.3389/fneur.2019.00256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction: The impact of levodopa-induced dyskinesia (LID) on the daily lives of patients with Parkinson's disease (PD) remains to be determined. Furthermore, evidence suggests that cardinal motor symptoms of PD may coexist with LID, but their impact on activities of daily living (ADL) relative to LID is not known. This cross-sectional study aimed at determining the effect of LID and cardinal motor symptoms of PD on ADL in patients who were experiencing peak-dose choreic-type LID. Method: One hundred and twenty-one patients diagnosed with PD known to experience choreic-type LID were recruited for the study. Patients were asked to perform a set of ADL. Levels of LID, tremor, bradykinesia, and freezing of gait (FoG) were measured using 17 inertial sensors design to capture full body movements, while rigidity, and postural instability were assessed using clinical evaluations. Cognition was also assessed using the mini-mental state examination. Success criteria were set for each ADL using the time needed to perform the task and errors measured in 69 age-gender-matched healthy controls. Binary logistic regressions were used to identify symptoms influencing success or failure for each activity. Receiver operating characteristic curves were computed on each significant symptom, and Youden indexes were calculated to determine the critical level of symptomatology at which the performance significantly changed. Results: Results show that 97.7% of patients who presented with LID during the experiment also presented with at least one cardinal motor symptom. On average, patients took more time and did more errors during ADL. Multivariate analyses revealed that for the great majority of ADL, LID were not associated with worsening of performance; however, postural instability, tremor, rigidity, and cognitive decline significantly decreased the odds of success. Conclusions: Residual symptoms of PD, such as tremor, rigidity, and postural instability still present at peak-dose were more problematic than LID in the performance of ADL for patients experiencing slight-to-moderate LID. We also found that cognitive decline was associated with decreased performance in certain tasks. Therefore, a strategy using lower doses of medication to manage LID may be counterproductive since it would not address most of these symptoms already present in patients.
Collapse
Affiliation(s)
- Etienne Goubault
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Hung P Nguyen
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Sarah Bogard
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Pierre J Blanchet
- Département de Stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, Canada.,Département de Médecine, CHU Montréal, Montréal, QC, Canada
| | - Erwan Bézard
- Laboratoire de Neurophysiologie, Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Unité Mixte de Recherche 5293, Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Claude Vincent
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Justyna Sarna
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Christian Duval
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Nilashi M, Ibrahim O, Ahmadi H, Shahmoradi L, Farahmand M. A hybrid intelligent system for the prediction of Parkinson's Disease progression using machine learning techniques. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Goubault E, Nguyen HP, Ayachi FS, Bogard S, Duval C. Do Bradykinesia and Tremor Interfere in Voluntary Movement of Essential Tremor Patients? Preliminary Findings. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2017; 7:459. [PMID: 28690920 PMCID: PMC5499257 DOI: 10.7916/d822319x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/23/2017] [Indexed: 12/02/2022]
Abstract
Background The aim of this study was to determine whether tremor and bradykinesia impacted a dexterous activity performed by patients with essential tremor (ET). Methods Core bradykinesia was assessed in 27 controls and 15 patients with ET using a rapid alternating movement (RAM) task. Then, participants performed a “counting money” counting tasks while equipped with inertial measurement units to detect and quantify tremor during movement. The time required to perform subsections of the tasks and the rate of failure (errors) were compared between groups using Mann–Whitney U tests and a chi-square test, respectively. Results Patients with ET presented with significant bradykinesia during the RAM task and had more tremor during the counting money task. However, the time required to perform the task and rate of failure were similar between groups. Discussion Results show that even though bradykinesia was detected during fast movements, and that tremor was present during a task requiring dexterity, both symptoms did not interfere with the performance of patients with ET. This pilot study suggests that there may be a threshold at which tremor will become problematic. Determining this threshold for a wide range of daily activities may help determine when it is appropriate to initiate treatment for patients with ET.
Collapse
Affiliation(s)
- Etienne Goubault
- Département des Sciences de l'activité physique Université du Québec à Montréal, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Hung P Nguyen
- Département des Sciences de l'activité physique Université du Québec à Montréal, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Fouaz S Ayachi
- Département des Sciences de l'activité physique Université du Québec à Montréal, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Sarah Bogard
- Département des Sciences de l'activité physique Université du Québec à Montréal, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Christian Duval
- Département des Sciences de l'activité physique Université du Québec à Montréal, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
10
|
Yang K, Xiong WX, Liu FT, Sun YM, Luo S, Ding ZT, Wu JJ, Wang J. Objective and quantitative assessment of motor function in Parkinson's disease-from the perspective of practical applications. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:90. [PMID: 27047949 DOI: 10.21037/atm.2016.03.09] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with high morbidity because of the coming aged society. Currently, disease management and the development of new treatment strategies mainly depend on the clinical information derived from rating scales and patients' diaries, which have various limitations with regard to validity, inter-rater variability and continuous monitoring. Recently the prevalence of mobile medical equipment has made it possible to develop an objective, accurate, remote monitoring system for motor function assessment, playing an important role in disease diagnosis, home-monitoring, and severity evaluation. This review discusses the recent development in sensor technology, which may be a promising replacement of the current rating scales in the assessment of motor function of PD.
Collapse
Affiliation(s)
- Ke Yang
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei-Xi Xiong
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng-Tao Liu
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi-Min Sun
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Susan Luo
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zheng-Tong Ding
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian-Jun Wu
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Wang
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
11
|
Bu LL, Yang K, Xiong WX, Liu FT, Anderson B, Wang Y, Wang J. Toward precision medicine in Parkinson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:26. [PMID: 26889479 DOI: 10.3978/j.issn.2305-5839.2016.01.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Precision medicine refers to an innovative approach selected for disease prevention and health promotion according to the individual characteristics of each patient. The goal of precision medicine is to formulate prevention and treatment strategies based on each individual with novel physiological and pathological insights into a certain disease. A multidimensional data-driven approach is about to upgrade "precision medicine" to a higher level of greater individualization in healthcare, a shift towards the treatment of individual patients rather than treating a certain disease including Parkinson's disease (PD). As one of the most common neurodegenerative diseases, PD is a lifelong chronic disease with clinical and pathophysiologic complexity, currently it is treatable but neither preventable nor curable. At its advanced stage, PD is associated with devastating chronic complications including both motor dysfunction and non-motor symptoms which impose an immense burden on the life quality of patients. Advances in computational approaches provide opportunity to establish the patient's personalized disease data at the multidimensional levels, which finally meeting the need for the current concept of precision medicine via achieving the minimal side effects and maximal benefits individually. Hence, in this review, we focus on highlighting the perspectives of precision medicine in PD based on multi-dimensional information about OMICS, molecular imaging, deep brain stimulation (DBS) and wearable sensors. Precision medicine in PD is expected to integrate the best evidence-based knowledge to individualize optimal management in future health care for those with PD.
Collapse
Affiliation(s)
- Lu-Lu Bu
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Ke Yang
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Wei-Xi Xiong
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Feng-Tao Liu
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Boyd Anderson
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Ye Wang
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| | - Jian Wang
- 1 Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China ; 2 School of Computing, National University of Singapore, Singapore
| |
Collapse
|
12
|
Duval C, Daneault JF, Hutchison WD, Sadikot AF. A brain network model explaining tremor in Parkinson's disease. Neurobiol Dis 2016; 85:49-59. [DOI: 10.1016/j.nbd.2015.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022] Open
|