1
|
Huang X, Schmelter F, Irshad MT, Piet A, Nisar MA, Sina C, Grzegorzek M. Optimizing sleep staging on multimodal time series: Leveraging borderline synthetic minority oversampling technique and supervised convolutional contrastive learning. Comput Biol Med 2023; 166:107501. [PMID: 37742416 DOI: 10.1016/j.compbiomed.2023.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31-92.34%, MF1 of 88.21-90.08%, and Cohen's Kappa coefficient k of 0.87-0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine.
Collapse
Affiliation(s)
- Xinyu Huang
- Institute of Medical Informatics, University of Lübeck, Germany.
| | - Franziska Schmelter
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | | | - Artur Piet
- Institute of Medical Informatics, University of Lübeck, Germany.
| | | | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany.
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Lübeck, Germany; Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Lübeck, Germany.
| |
Collapse
|
2
|
Huang X, Shirahama K, Irshad MT, Nisar MA, Piet A, Grzegorzek M. Sleep Stage Classification in Children Using Self-Attention and Gaussian Noise Data Augmentation. SENSORS (BASEL, SWITZERLAND) 2023; 23:3446. [PMID: 37050506 PMCID: PMC10098613 DOI: 10.3390/s23073446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The analysis of sleep stages for children plays an important role in early diagnosis and treatment. This paper introduces our sleep stage classification method addressing the following two challenges: the first is the data imbalance problem, i.e., the highly skewed class distribution with underrepresented minority classes. For this, a Gaussian Noise Data Augmentation (GNDA) algorithm was applied to polysomnography recordings to seek the balance of data sizes for different sleep stages. The second challenge is the difficulty in identifying a minority class of sleep stages, given their short sleep duration and similarities to other stages in terms of EEG characteristics. To overcome this, we developed a DeConvolution- and Self-Attention-based Model (DCSAM) which can inverse the feature map of a hidden layer to the input space to extract local features and extract the correlations between all possible pairs of features to distinguish sleep stages. The results on our dataset show that DCSAM based on GNDA obtains an accuracy of 90.26% and a macro F1-score of 86.51% which are higher than those of our previous method. We also tested DCSAM on a well-known public dataset-Sleep-EDFX-to prove whether it is applicable to sleep data from adults. It achieves a comparable performance to state-of-the-art methods, especially accuracies of 91.77%, 92.54%, 94.73%, and 95.30% for six-stage, five-stage, four-stage, and three-stage classification, respectively. These results imply that our DCSAM based on GNDA has a great potential to offer performance improvements in various medical domains by considering the data imbalance problems and correlations among features in time series data.
Collapse
Affiliation(s)
- Xinyu Huang
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Kimiaki Shirahama
- Department of Informatics, Kindai University, 3-4-1 Kowakae, Higashiosaka City 577-8502, Osaka, Japan
| | - Muhammad Tausif Irshad
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of IT, University of the Punjab, Lahore 54000, Pakistan
| | | | - Artur Piet
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Knowledge Engineering, University of Economics, Bogucicka 3, 40287 Katowice, Poland
| |
Collapse
|
3
|
Abidi A, Ben Khalifa K, Ben Cheikh R, Valderrama Sakuyama CA, Bedoui MH. Automatic Detection of Drowsiness in EEG Records Based on Machine Learning Approaches. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-10858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Evaluation of a Single-Channel EEG-Based Sleep Staging Algorithm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052845. [PMID: 35270548 PMCID: PMC8910622 DOI: 10.3390/ijerph19052845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Sleep staging is the basis of sleep assessment and plays a crucial role in the early diagnosis and intervention of sleep disorders. Manual sleep staging by a specialist is time-consuming and is influenced by subjective factors. Moreover, some automatic sleep staging algorithms are complex and inaccurate. The paper proposes a single-channel EEG-based sleep staging method that provides reliable technical support for diagnosing sleep problems. In this study, 59 features were extracted from three aspects: time domain, frequency domain, and nonlinear indexes based on single-channel EEG data. Support vector machine, neural network, decision tree, and random forest classifier were used to classify sleep stages automatically. The results reveal that the random forest classifier has the best sleep staging performance among the four algorithms. The recognition rate of the Wake phase was the highest, at 92.13%, and that of the N1 phase was the lowest, at 73.46%, with an average accuracy of 83.61%. The embedded method was adopted for feature filtering. The results of sleep staging of the 11-dimensional features after filtering show that the random forest model achieved 83.51% staging accuracy under the condition of reduced feature dimensions, and the coincidence rate with the use of all features for sleep staging was 94.85%. Our study confirms the robustness of the random forest model in sleep staging, which also represents a high classification accuracy with appropriate classifier algorithms, even using single-channel EEG data. This study provides a new direction for the portability of clinical EEG monitoring.
Collapse
|
5
|
Huang X, Shirahama K, Li F, Grzegorzek M. Sleep stage classification for child patients using DeConvolutional Neural Network. Artif Intell Med 2020; 110:101981. [PMID: 33250147 DOI: 10.1016/j.artmed.2020.101981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Studies from the literature show that the prevalence of sleep disorder in children is far higher than that in adults. Although much research effort has been made on sleep stage classification for adults, children have significantly different characteristics of sleep stages. Therefore, there is an urgent need for sleep stage classification targeting children in particular. Our method focuses on two issues: The first is timestamp-based segmentation (TSS) to deal with the fine-grained annotation of sleep stage labels for each timestamp. Compared to this, popular sliding window approaches unnecessarily aggregate such labels into coarse-grained ones. We utilize DeConvolutional Neural Network (DCNN) that inversely maps features of a hidden layer back to the input space to predict the sleep stage label at each timestamp. Thus, our DCNN can yield better classification performances by considering labels at numerous timestamps. The second issue is the necessity of multiple channels. Different clinical signs, symptoms or other auxiliary examinations could be represented by different Polysomnography (PSG) recordings, so all of them should be analyzed comprehensively. We therefor exploit multivariate time-series of PSG recordings, including 6 electroencephalograms (EEGs) channels, 2 electrooculograms (EOGs) channels (left and right), 1 electromyogram (chin EMG) channel and two leg electromyogram channels. Our DCNN-based method is tested on our SDCP dataset collected from child patients aged from 5 to 10 years old. The results show that our method yields the overall classification accuracy of 84.27% and macro F1-score of 72.51% which are higher than those of existing sliding window-based methods. One of the biggest advantages of our DCNN-based method is that it processes raw PSG recordings and internally extracts features useful for accurate sleep stage classification. We examine whether this is applicable for sleep data of adult patients by testing our method on a well-known public dataset Sleep-EDFX. Our method achieves the average overall accuracy of 90.89% which is comparable to those of state-of-the-art methods without using any hand-crafted features. This result indicates the great potential of our method because it can be generally used for timestamp-level classification on multivariate time-series in various medical fields. Additionally, we provide source codes so that researchers can reproduce the results in this paper and extend our method.
Collapse
Affiliation(s)
- Xinyu Huang
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany.
| | - Kimiaki Shirahama
- Department of Informatics, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan.
| | - Frédéric Li
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany.
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany.
| |
Collapse
|
6
|
Chriskos P, Frantzidis CA, Nday CM, Gkivogkli PT, Bamidis PD, Kourtidou-Papadeli C. A review on current trends in automatic sleep staging through bio-signal recordings and future challenges. Sleep Med Rev 2020; 55:101377. [PMID: 33017770 DOI: 10.1016/j.smrv.2020.101377] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/11/2020] [Accepted: 06/02/2020] [Indexed: 12/09/2022]
Abstract
Sleep staging is a vital process conducted in order to analyze polysomnographic data. To facilitate prompt interpretation of these recordings, many automatic sleep staging methods have been proposed. These methods rely on bio-signal recordings, which include electroencephalography, electrocardiography, electromyography, electrooculography, respiratory, pulse oximetry and others. However, advanced, uncomplicated and swift sleep-staging-evaluation is still needed in order to improve the existing polysomnographic data interpretation. The present review focuses on automatic sleep staging methods through bio-signal recording including current and future challenges.
Collapse
Affiliation(s)
- Panteleimon Chriskos
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A Frantzidis
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece
| | - Christiane M Nday
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Polyxeni T Gkivogkli
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece
| | - Panagiotis D Bamidis
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; Greek Aerospace Medical Association and Space Research (GASMA-SR), Thessaloniki, Greece.
| | | |
Collapse
|
7
|
Liang SF, Shih YH, Chen PY, Kuo CE. Development of a human-computer collaborative sleep scoring system for polysomnography recordings. PLoS One 2019; 14:e0218948. [PMID: 31291270 PMCID: PMC6619661 DOI: 10.1371/journal.pone.0218948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/12/2019] [Indexed: 11/19/2022] Open
Abstract
The overnight polysomnographic (PSG) recordings of patients were scored by an expert to diagnose sleep disorders. Visual sleep scoring is a time-consuming and subjective process. Automatic sleep staging methods can help; however, the mechanism and reliability of these methods are not fully understood. Therefore, experts often need to rescore the recordings to obtain reliable results. Here, we propose a human-computer collaborative sleep scoring system. It is a rule-based automatic sleep scoring method that follows the American Academy of Sleep Medicine (AASM) guidelines to perform an initial scoring. Then, the reliability level of each epoch is analyzed based on physiological patterns during sleep and the characteristics of various stage changes. Finally, experts would only need to rescore epochs with a low-reliability level. The experimental results show that the average agreement rate between our system and fully manual scorings can reach 90.42% with a kappa coefficient of 0.85. Over 50% of the manual scoring time can be reduced. Due to the demonstrated robustness and applicability, the proposed approach can be integrated with various PSG systems or automatic sleep scoring methods for sleep monitoring in clinical or homecare applications in the future.
Collapse
Affiliation(s)
- Sheng-Fu Liang
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
- AI Biomedical Research Center at NCKU, Ministry of Science and Technology, Tainan, Taiwan
| | - Yu-Hsuan Shih
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Yu Chen
- Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-En Kuo
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
8
|
A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates. Clin Neurophysiol 2018; 129:815-828. [DOI: 10.1016/j.clinph.2017.12.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023]
|
9
|
Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput Appl 2017. [DOI: 10.1007/s00521-017-2919-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation. ENTROPY 2016. [DOI: 10.3390/e18090272] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|