1
|
Jin X, Imai T, Morais A, Sasaki Y, Chung DY, Ayata C. Hippocampal infarction and generalized seizures predict early mortality after endovascular middle cerebral artery occlusion in mice. Exp Neurol 2024; 380:114903. [PMID: 39079623 PMCID: PMC11347107 DOI: 10.1016/j.expneurol.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Endovascular middle cerebral artery occlusion (MCAO) is a widely used experimental ischemic stroke model. However, the model carries high early mortality. Our aim was to investigate the factors that influence early mortality within 48 h of reperfusion after transient MCAO. Using C57BL/6 mice, we induced 1-hour endovascular filament MCAO. To introduce heterogeneity of infarct volumes, a subset of animals had additional tandem common carotid artery occlusion (MCAO+CCAO). Continuous video monitoring was used to gain insight into the cause of death. Mortality within 48 h was 25% in the pooled cohort. All animals with early mortality suffered from infarcts in the hippocampus, sometimes accompanied by infarcts in the thalamus and midbrain, which occurred exclusively in the MCAO+CCAO group. All animals with early mortality developed convulsive seizures captured on video monitoring. None of the animals that did not develop convulsive seizures died. Among the three regions, hippocampal infarction appeared necessary for convulsive seizures and early mortality. Our data highlight seizures as the primary cause of mortality within the first 48 h after endovascular filament MCAO, linked to hippocampal infarction. Since hippocampal blood supply is mainly from the posterior cerebral artery (PCA), avoiding concurrent PCA ischemia can decrease mortality in proximal MCAO models.
Collapse
Affiliation(s)
- Xuyan Jin
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Takahiko Imai
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Andreia Morais
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuichi Sasaki
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David Y Chung
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Cenk Ayata
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Liu Y, Leng C, Li Y, Zhou M, Ye X, Li C, Xia X, Sun B, Shu X, Liu W. A novel p55PIK signaling peptide inhibitor alleviates neuroinflammation via the STAT3/NF-kB signaling pathway in experimental stroke. J Stroke Cerebrovasc Dis 2024; 33:107736. [PMID: 38679216 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Ischemic stroke remains the predominant contributor to mortality and disability globally. Microglia undergo rapid activation and initiate inflammatory cascade reactions by phenotypic polarization, participating in the regulation of inflammatory injury and tissue repair post-ischemic stroke. Regulating microglia-mediated neuroinflammation is a promising therapeutic strategy for ischemic stroke. Previously, we designed and synthesized a novel p55PIK inhibitor, TAT-N15 polypeptide, which presents inhibitive activity on NF-κB signaling-mediated inflammation in acute conjunctivitis and allergic rhinitis. The present study aimed to explore the therapeutic effect and mechanism of TAT-N15 on ischemia stroke. METHODS The mouse model of transient cerebral ischemia was made using the intraluminal filament method. After being treated with daily intraperitoneal injections of TAT-N15 (10 mg/kg) for 7 d, the neurological outcomes and the cerebral infarction volume were evaluated. Histopathology of the ischemia cerebral hemisphere was observed by H&E and Nissl staining. Neuronal survival, astrogliosis, and co-labeling of CD86/Iba1 and CD206/Iba1 were detected by immunofluorescence. The cell apoptosis was estimated by TUNEL staining. The expression levels of apoptosis-associated proteins, proinflammatory cytokines, protein markers of M1 and M2 microglia, and the phosphorylation of NF-κB and STAT3 proteins in the ischemic penumbra were detected by Western blot. RESULTS TAT-N15 treatment significantly decreased the infarct volume and alleviated neurological functional impairment, neuronal injury, and neuron apoptosis. Meanwhile, TAT-N15 treatment restrained the activation of microglia and astrocytes as well as the protein expression of proinflammatory cytokine in ischemic penumbra. Additionally, the administration of TAT-N15 treatment resulted in a significant reduction in the density of M1 phenotype microglia while concurrently increasing the density of M2 phenotype microglia within the ischemic penumbra. Finally, mechanical analysis unveiled that TAT-N15 exerted a substantial inhibitory effect on the protein expression of phosphorylated STAT3 and NF-κB. CONCLUSION TAT-N15 may inhibit neuroinflammation via regulating microglia activation and polarization through the STAT3/NF-κB pathway, which exhibits the neuroprotection effect in ischemic stroke.
Collapse
Affiliation(s)
- Yujing Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Youwei Li
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Meiling Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiansheng Ye
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chaoxing Li
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, China
| | - Xianmin Xia
- Wuhan Yicheng Biotechnology Co., Wuhan, 430060, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
3
|
Martínez-Torres NI, Cárdenas-Bedoya J, Torres-Mendoza BM. Acute Combined Cerebrolysin and Nicotinamide Administration Promote Cognitive Recovery Through Neuronal Changes in the Hippocampus of Rats with Permanent Middle Cerebral Artery Occlusion. Neuroscience 2024; 549:76-83. [PMID: 38734304 DOI: 10.1016/j.neuroscience.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Stroke is one of the leading causes of disability worldwide, where the Hippocampus (HPC) is affected. HPC organizes memory, which is a cognitive domain compromised after a stroke, where cerebrolysin (CBL) and Nicotinamide (NAM) have been recognized as potentially therapeutic. In this study, we aimed to evaluate the efficacy of a combined administration of CBL and NAM in a rat stroke model. Male Sprague-Dawley rats (n = 36) were divided into four groups: saline (pMCAO - Saline), CBL (pMCAO + CBL), NAM (pMCAO + NAM), and experimental (pMCAO + CBL-NAM) (n = 9 per group). A permanent middle cerebral artery occlusion (pMCAO) was induced through electrocauterization of the middle cerebral artery, followed by the administration of CBL (2.5 ml/kg), NAM (500 mg/kg) or combined immediately after skin suture, as well as at 24, 48, and 72 h post-surgery. The rats were evaluated in the novel object recognition test; hippocampal infarct area measurement; reconstruction of neurons from CA1 for Sholl analysis; and, measurement of brain-derived neurotrophic factor (BDNF) levels near the infarct zone. Our findings revealed that the administration of CBL or NAM induced infarct reduction, improved cognition, and increased BDNF levels. Moreover, a combination of CBL and NAM increased dendritic intersection in CA1 pyramidal neurons. Thus, the combined administration of CBL and NAM can promote cognitive recovery after a stroke, with infarct reduction, cytoarchitectural changes in HPC CA1 neurons, and BDNF increase. Our findings suggest that this combination therapy could be a promising intervention strategy for stroke.
Collapse
Affiliation(s)
- Nestor I Martínez-Torres
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Centro Universitario del Norte, Departamento de Bienestar y Desarrollo Sustentable, Universidad de Guadalajara, Colotlán, Jalisco, Mexico
| | - Jhonathan Cárdenas-Bedoya
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Centro Universitario de Ciencias de la Salud, Departamento de Disciplinas Filósofico, Metodológicas e Instrumentales, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Blanca Miriam Torres-Mendoza
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Centro Universitario de Ciencias de la Salud, Departamento de Disciplinas Filósofico, Metodológicas e Instrumentales, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
4
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Zhang Y, Yu L, Zhou S, He Y, Jin W, Wan H, Yang J. A comparative study of the protective effects of Guhong injection and its component on cerebral ischemia-reperfusion injury based on the oxidation index. Brain Res 2023; 1819:148532. [PMID: 37586676 DOI: 10.1016/j.brainres.2023.148532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Guhong injection (GHI), a compound preparation of Chinese and Western medicine, is composed of safflower water extract and aceglutamide, and has a certain therapeutic effect on cerebral ischemia diseases. In this study, we investigated and compared the protective effects of GHI, Honghua injection (HHI), and aceglutamide (ACG) on cerebral ischemia-reperfusion injury in Sprague-Dawley (SD) rats randomly assigned to the following 5 groups: Sham, MCAO, MCAO + GHI, MCAO + HHI, and MCAO + ACG. The results revealed that GHI, HHI, and ACG improved neurological functions and reduced the infarct volume, the contents of HIF-1α, PKC, and EPO, and the expression of NOX-4 and HIF-1α mRNA. The protein expression of HIF-1α and iNOS treated with GHI, HHI, and ACG was decreased, while that of PHD2 was increased. Meanwhile, the BrdU+/NeuN+ cell counts of SGZ and SVZ areas in the brain tissues of the GHI, HHI, and ACG groups were greater than those of the MCAO rats. Thus, GHI, HHI, and ACG can confer protection against cerebral ischemia-reperfusion injury, possibly through antioxidation. Our research findings may provide evidence for the effectiveness of the combination of traditional Chinese and Western medicine.
Collapse
Affiliation(s)
- Yangyang Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Saiya Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Haitong Wan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
6
|
Pastorello Y, Carare RO, Banescu C, Potempa L, Di Napoli M, Slevin M. Monomeric C-reactive protein: A novel biomarker predicting neurodegenerative disease and vascular dysfunction. Brain Pathol 2023; 33:e13164. [PMID: 37158450 PMCID: PMC10580018 DOI: 10.1111/bpa.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aβ), association with and capacity to "manufacture" Aβ-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Roxana O. Carare
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Clinical and experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Claudia Banescu
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and PharmacyRoosevelt UniversitySchaumburgIllinoisUSA
| | - Mario Di Napoli
- Department of Neurology and Stroke UnitSan Camillo de Lellis General HospitalRietiItaly
| | - Mark Slevin
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Manchester Metropolitan UniversityManchesterUK
| |
Collapse
|
7
|
Chen J, Hong J, Li C, Zeng Y, Xie M, Zhang X, Wen H. Changes in gene expression and neuroinflammation in the hippocampus of rats with poststroke cognitive impairment. Exp Biol Med (Maywood) 2023; 248:883-896. [PMID: 37012665 PMCID: PMC10484197 DOI: 10.1177/15353702231157922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/13/2023] [Indexed: 04/05/2023] Open
Abstract
Poststroke cognitive impairment (PSCI) often occurs during the stroke recovery period and greatly increases the difficulty of rehabilitation. Activation of neuroinflammation and long-term changes in gene expression patterns in the hippocampus could be essential in the development of PSCI. Therefore, this study aimed to identify neuroinflammation and changes in gene expression patterns in the hippocampus in rats with PSCI. Rats underwent transient middle cerebral artery occlusion (tMCAO) or sham surgery. The infarct volume was measured on day 3 after surgery. The Morris water maze (MWM) test was used to assess cognitive function. Microglial activation and white matter (WM) lesions in the hippocampus were evaluated on day 28 after surgery. In addition, we compared differentially expressed genes (DEGs) in the hippocampus between tMCAO group rats and sham group rats by RNA sequencing. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses were conducted to investigate these DEGs. The results showed that the tMCAO group rats showed extensive infarction and cognitive dysfunction compared with the sham group rats. Microglial activation and WM damage were obvious in the hippocampus of tMCAO group rats. We found 43 DEGs by RNA sequencing: 29 genes with upregulated expression and 14 genes with downregulated expression. The GO analysis indicated that DEGs were mainly involved in cell proliferation and differentiation, cholesterol synthesis, and metabolism. The KEGG pathway analysis suggested that the DEGs were significantly enriched in intestinal immune network for IgA production and steroid biosynthesis. Acta2, Calb2, and Cxcl12 were notable in the PPI analysis. Our results suggest that microglial activation and WM damage are maintained in rats with PSCI. The mechanism may be related to the regulation of steroid biosynthesis, intestinal immunity, and potential key genes such as Acta2, Calb2, and Cxcl12 in the hippocampus.
Collapse
Affiliation(s)
| | | | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Mengshu Xie
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Xue Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
8
|
Mysiewicz S, North KC, Moreira L, Odum SJ, Bukiya AN, Dopico AM. Interspecies and regional variability of alcohol action on large cerebral arteries: regulation by KCNMB1 proteins. Am J Physiol Regul Integr Comp Physiol 2023; 324:R480-R496. [PMID: 36717168 PMCID: PMC10027090 DOI: 10.1152/ajpregu.00103.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Alcohol intake leading to blood ethanol concentrations (BEC) ≥ legal intoxication modifies brain blood flow with increases in some regions and decreases in others. Brain regions receive blood from the Willis' circle branches: anterior, middle (MCA) and posterior cerebral (PCA), and basilar (BA) arteries. Rats and mice have been used to identify the targets mediating ethanol-induced effects on cerebral arteries, with conclusions being freely interchanged, albeit data were obtained in different species/arterial branches. We tested whether ethanol action on cerebral arteries differed between male rat and mouse and/or across different brain regions and identified the targets of alcohol action. In both species and all Willis' circle branches, ethanol evoked reversible and concentration-dependent constriction (EC50s ≈ 37-86 mM; below lethal BEC in alcohol-naïve humans). Although showing similar constriction to depolarization, both species displayed differential responses to ethanol: in mice, MCA constriction was highly sensitive to the presence/absence of the endothelium, whereas in rat PCA was significantly more sensitive to ethanol than its mouse counterpart. In the rat, but not the mouse, BA was more ethanol sensitive than other branches. Both interspecies and regional variability were ameliorated by endothelium. Selective large conductance (BK) channel block in de-endothelialized vessels demonstrated that these channels were the effectors of alcohol-induced cerebral artery constriction across regions and species. Variabilities in alcohol actions did not fully matched KCNMB1 expression across vessels. However, immunofluorescence data from KCNMB1-/- mouse arteries electroporated with KCNMB1-coding cDNA demonstrate that KCNMB1 proteins, which regulate smooth muscle (SM) BK channel function and vasodilation, regulate interspecies and regional variability of brain artery responses to alcohol.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Kelsey C North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Luiz Moreira
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Schyler J Odum
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
9
|
Ma T, Li C, Nie Z, Miao H, Wu F. Regulatory Effect of Electroacupuncture on Hypothalamic Serotonin and its Receptor in Rats with Cerebral Ischemia. Curr Neurovasc Res 2023; 20:237-243. [PMID: 37309759 PMCID: PMC10556395 DOI: 10.2174/1567202620666230612110156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previous studies have shown that the neurological damage caused by middle cerebral artery occlusion (MCAO) is not only limited to local infarction but can also cause secondary damage in distant sites, such as the hypothalamus. 5-hydroxytryptamine (5-HT)/ 5-HT transporter (5-HTT) and 5-HT receptor 2A (5-HT2A) are important in the treatment of cerebrovascular diseases. OBJECTIVE This study aimed to study the effect of electroacupuncture (EA) on the expression of 5- HT, 5-HTT, and 5-HT2A in the hypothalamus of rats with ischemic brain injury and to explore the protective effect and potential mechanism of EA on the secondary injury of cerebral ischemia. METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: sham group, model group, and EA group. The permanent middle cerebral artery occlusion (pMCAO) method was used to induce ischemic stroke in rats. In the EA group, the Baihui (GV20) and Zusanli (ST36) points were selected for treatment, which was administered once per day for two consecutive weeks. The neuroprotective effect of EA was evaluated by nerve defect function scores and Nissl staining. The content of 5-HT in hypothalamus was detected by enzyme linked immunosorbent assay (ELISA), and the expression of 5-HTT and 5-HT2A were detected by Western blot. RESULTS Compared with that in the sham group, the nerve defect function score in the model group rats was significantly increased, the hypothalamus tissue showed obvious nerve damage, the levels of 5-HT and the expression of 5-HTT were significantly reduced, and the expression of 5-HT2A was significantly increased. After 2 weeks of EA treatment, the nerve defect function scores of pMCAO rats were significantly reduced, the hypothalamic nerve injury was significantly reduced, the levels of 5-HT and the expression of 5-HTT were significantly increased, and the expression of 5-HT2A was significantly decreased. CONCLUSION EA has a certain therapeutic effect on hypothalamic injury secondary to permanent cerebral ischemia, and its potential mechanism may be closely related to the upregulation of 5-HT and 5-HTT expression and the downregulation of 5-HT2A expression.
Collapse
Affiliation(s)
- Tongjun Ma
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Chenyu Li
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zeyin Nie
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Huachun Miao
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Feng Wu
- Department of Human Anatomy, Wannan Medical College, Wuhu, Anhui, 241002, China
| |
Collapse
|
10
|
Kim HY, Back DB, Choi BR, Choi DH, Kwon KJ. Rodent Models of Post-Stroke Dementia. Int J Mol Sci 2022; 23:ijms231810750. [PMID: 36142661 PMCID: PMC9501431 DOI: 10.3390/ijms231810750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Post-stroke cognitive impairment is one of the most common complications in stroke survivors. Concomitant vascular risk factors, including aging, diabetes mellitus, hypertension, dyslipidemia, or underlying pathologic conditions, such as chronic cerebral hypoperfusion, white matter hyperintensities, or Alzheimer’s disease pathology, can predispose patients to develop post-stroke dementia (PSD). Given the various clinical conditions associated with PSD, a single animal model for PSD is not possible. Animal models of PSD that consider these diverse clinical situations have not been well-studied. In this literature review, diverse rodent models that simulate the various clinical conditions of PSD have been evaluated. Heterogeneous rodent models of PSD are classified into the following categories: surgical technique, special structure, and comorbid condition. The characteristics of individual models and their clinical significance are discussed in detail. Diverse rodent models mimicking the specific pathomechanisms of PSD could provide effective animal platforms for future studies investigating the characteristics and pathophysiology of PSD.
Collapse
Affiliation(s)
- Hahn Young Kim
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-7563; Fax: +82-2-2030-5169
| | - Dong Bin Back
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
| | - Bo-Ryoung Choi
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
| | - Dong-Hee Choi
- Department of Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Kyoung Ja Kwon
- Department of Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| |
Collapse
|
11
|
Brait VH, Jackman KA, Pang TY. Effects of wheel-running on anxiety and depression-relevant behaviours in the MCAO mouse model of stroke: moderation of brain-derived neurotrophic factor and serotonin receptor gene expression. Behav Brain Res 2022; 432:113983. [PMID: 35777551 DOI: 10.1016/j.bbr.2022.113983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Stroke continues to be a major cause of mortality globally. Post-stroke treatment is complicated by the heterogenous nature of pathology and the emergence of secondary psychological symptoms are an additional challenge to the recovery process. Poststroke depression (PSD) is a common co-morbidity and is a major impediment to recovery. While selective serotonin reuptake inhibitors (SSRIs) have proven to be clinically efficacious in treating PSD, the pathogenic processes that underlie the manifestation of depressive mood post-stroke remains unclear. Furthermore, the use of SSRIs is associated with risks of intracerebral haemorrhage, so alternative treatment options need to be continuously explored. Exercise has been demonstrated to be beneficial for improving mood in humans and preclinical models of neurological conditions. Little is known of the mood-related benefits of physical exercise post-stroke. Using the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischaemia, we investigated whether behavioural deficits emerge post-MCAO and could be rescued by voluntary wheel-running. We report that MCAO induced hypo-locomotion and anhedonia-related behaviours, with some improvements conferred by wheel-running. Serotonin transporter gene expression was increased in the MCAO hippocampus and frontal cortex, but this increase remained despite wheel-running. Wheel-running associated up-regulation of BDNF gene expression was unaffected in MCAO mice, reflecting conservation of key neuroplasticity molecular pathways. Taken together, our results highlight the need for further research into serotonergic modulation of the affective symptoms of stroke.
Collapse
Affiliation(s)
- Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Katherine A Jackman
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Anatomy and Physiology, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
12
|
Pinto R, Magalhães A, Sousa M, Melo L, Lobo A, Barros P, Gomes JR. Bridging the Transient Intraluminal Stroke Preclinical Model to Clinical Practice: From Improved Surgical Procedures to a Workflow of Functional Tests. Front Neurol 2022; 13:846735. [PMID: 35359638 PMCID: PMC8963503 DOI: 10.3389/fneur.2022.846735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
Acute ischemic stroke (AIS) remains a leading cause of mortality, despite significant advances in therapy (endovascular thrombectomy). Failure in developing novel effective therapies is associated with unsuccessful translation from preclinical studies to clinical practice, associated to inconsistent and highly variable infarct areas and lack of relevant post-stroke functional evaluation in preclinical research. To outreach these limitations, we optimized the intraluminal transient middle cerebral occlusion, a widely used mouse stroke model, in two key parameters, selection of appropriate occlusion filaments and time of occlusion, which show a significant variation in the literature. We demonstrate that commercially available filaments with short coating length (1–2 mm), together with 45-min occlusion, results in a consistent affected brain region, similar to what is observed in most patients with AIS. Importantly, a dedicated post-stroke care protocol, based on clinical practice applied to patients who had stroke, resulted in lower mortality and improved mice welfare. Finally, a battery of tests covering relevant fine motor skills, sensory functions, and learning/memory behaviors revealed a significant effect of tMCAO brain infarction, which is parallel to patient symptomatology as measured by relevant clinical scales (NIH Stroke Scale, NIHSS and modified Rankin Scale, mRS). Thus, in order to enhance translation to clinical practice, future preclinical stroke research must consider the methodology described in this study, which includes improved reproducible surgical procedure, postoperative care, and the battery of functional tests. This will be a major step s closing the gap from bench to bedside, rendering the development of novel effective therapeutic approaches.
Collapse
Affiliation(s)
- Raquel Pinto
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Addiction Biology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Mafalda Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Advanced Light Microscopy Unit, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Lúcia Melo
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Andrea Lobo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Addiction Biology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Pedro Barros
- Neurology Department, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal.,Stroke Unit, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - João R Gomes
- Molecular Neurobiology Unit, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Neurofunctional and neuroimaging readouts for designing a preclinical stem-cell therapy trial in experimental stroke. Sci Rep 2022; 12:4700. [PMID: 35304540 PMCID: PMC8933390 DOI: 10.1038/s41598-022-08713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
With the aim of designing a preclinical study evaluating an intracerebral cell-based therapy for stroke, an observational study was performed in the rat suture model of ischemic stroke. Objectives were threefold: (i) to characterize neurofunctional and imaging readouts in the first weeks following transient ischemic stroke, according to lesion subtype (hypothalamic, striatal, corticostriatal); (ii) to confirm that intracerebral administration does not negatively impact these readouts; and (iii) to calculate sample sizes for a future therapeutic trial using these readouts as endpoints. Our results suggested that the most relevant endpoints were side bias (staircase test) and axial diffusivity (AD) (diffusion tensor imaging). Hypothalamic-only lesions did not affect those parameters, which were close to normal. Side bias in striatal lesions reached near-normal levels within 2 weeks, while rats with corticostriatal lesions remained impaired until week 14. AD values were decreased at 4 days and increased at 5 weeks post-surgery, with a subtype gradient: hypothalamic < striatal < corticostriatal. Intracerebral administration did not impact these readouts. After sample size calculation (18-147 rats per group according to the endpoint considered), we conclude that a therapeutic trial based on both readouts would be feasible only in the framework of a multicenter trial.
Collapse
|
14
|
Xin YY, Wang JX, Xu AJ. Electroacupuncture ameliorates neuroinflammation in animal models. Acupunct Med 2022; 40:474-483. [PMID: 35229660 DOI: 10.1177/09645284221076515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Neuroinflammation refers to a wide range of immune responses occurring in the brain or spinal cord. It is closely related to a variety of neurodegenerative diseases, for which it potentially represents a new direction for treatment. Electroacupuncture (EA) is one method of acupuncture treatment, which can be used as an adjuvant therapy for many diseases. This review focuses on molecular mechanisms of EA in the reduction of neuroinflammation, summarizes relevant basic research and outlines future directions for investigation. Findings: A growing body of basic research has shown that EA can ameliorate neuroinflammation centrally (in animal models of ischemic stroke, Alzheimer’s disease, traumatic brain injury, spinal cord injury, Parkinson’s disease and vascular dementia) and peripherally (e.g. after a surgical insult or injection of lipopolysaccharide) and that its effects involve different molecular mechanisms, including activation of the α7 nicotinic acetylcholine receptor signaling pathway and P2 type purinergic receptors, inhibition of nuclear factor κB, and mitigation of damage secondary to oxidative stress and NOD-like receptor protein 3 inflammasome activation. Conclusions: EA is capable of regulating multiple cell signal transduction pathways to alleviate neuroinflammation in animal models. Although the findings of animal studies are encouraging, further prospective clinical trials are needed to verify the efficacy of EA for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Yue-yang Xin
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-xu Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-jun Xu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Sun J, Sun R, Li C, Luo X, Chen J, Hong J, Zeng Y, Wang QM, Wen H. NgR1 pathway expression in cerebral ischemic Sprague-Dawley rats with cognitive impairment. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:767-775. [PMID: 34630954 PMCID: PMC8487595 DOI: 10.22038/ijbms.2021.53316.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): This study aimed to determine the effect of ischemic occlusion duration and recovery time course on motor and cognitive function, identify optimal conditions for assessing cognitive function with minimal interference from motor deficits, and elucidate the underlying mechanism of axonal inhibitors. Materials and Methods: Sprague-Dawley (SD) rats were randomly allocated to the transient middle cerebral artery occlusion (tMCAO) 60-min (tMCAO60min), tMCAO90min, tMCAO120min, and sham groups. We conducted forelimb grip strength, two-way shuttle avoidance task, and novel object recognition task (NORT)tests at three time points (14, 21, and 28 days). Expression of Nogo receptor-1 (NgR1), the endogenous antagonist lateral olfactory tract usher substance, ras homolog family member A (Rho-A), and RhoA-activated Rho kinase (ROCK) was examined in the ipsilateral thalamus. Results: There was no difference in grip strength between sham and tMCAO90min rats at 28 days. tMCAO90min and tMCAO120min rats showed lower discrimination indices in the NORT than sham rats on day 28. Compared with that in sham rats, the active avoidance response rate was lower in tMCAO90min rats on days 14, 21, and 28 and in tMCAO120min rats on days 14 and 21. Furthermore, 50-54% of rats in the tMCAO90min group developed significant cognitive impairment on day 28, and thalamic NgR1, RhoA, and ROCK expression were greater in tMCAO90min rats than in sham rats. Conclusion: Employing 90-min tMCAO in SD rats and assessing cognitive function 28 days post-stroke could minimize motor dysfunction effects in cognitive function assessments. Axonal inhibitor deregulation could be involved in poststroke cognitive impairment.
Collapse
Affiliation(s)
- Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.,Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No.8 Fuyu east Road, Guangzhou 511400, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen 518048, Guangdong Province, China.,Shenzhen Dapeng New District Nan'ao People's Hospital Shenzhen 518048, Guangdong Province, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School,96 13 Street, Charlestown, MA 02129, USA
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
16
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
17
|
Amki ME, Wegener S. Reperfusion failure despite recanalization in stroke: New translational evidence. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2021. [DOI: 10.1177/2514183x211007137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current treatment for acute ischemic stroke aims at recanalizing the occluded blood vessel to reperfuse ischemic brain tissue. Clot removal can be achieved pharmacologically with a thrombolytic drug, such as recombinant tissue plasminogen activator, or with mechanical thrombectomy. However, reopening the occluded vessel does not guarantee full tissue reperfusion, which has been referred to as reperfusion failure. When it occurs, reperfusion failure significantly attenuates the beneficial effect of recanalization therapy and severely affects functional recovery of stroke patients. The mechanisms of reperfusion failure are somewhat complex and not fully understood. Briefly, after stroke, capillaries show stalls, constriction and luminal narrowing, being crowded with neutrophils, and fibrin–platelet deposits. Furthermore, after recanalization in stroke patients, a primary clot can break, dislodge, and occlude distal arterial branches further downstream. In this review, we highlight a rodent model that allows studying the pathophysiological mechanisms underlying reperfusion failure after stroke. We also describe the vascular and intravascular changes involved in reperfusion, which may provide relevant therapeutic targets for improving treatment of stroke patients.
Collapse
Affiliation(s)
- Mohamad El Amki
- Department of Neurology, University Hospital Zürich (USZ) and University of Zurich (UZH), Clinical Neuroscience Center and Zurich Neuroscience Center (ZNZ), Zürich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital Zürich (USZ) and University of Zurich (UZH), Clinical Neuroscience Center and Zurich Neuroscience Center (ZNZ), Zürich, Switzerland
| |
Collapse
|
18
|
Du L, Zhao Z, Liu X, Chen Y, Gao W, Wang Y, Liu J, Liu B, Ma G. Alterations of Iron Level in the Bilateral Basal Ganglia Region in Patients With Middle Cerebral Artery Occlusion. Front Neurosci 2021; 14:608058. [PMID: 33551726 PMCID: PMC7859276 DOI: 10.3389/fnins.2020.608058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose: The purpose of this study was to explore the changes of iron level using quantitative susceptibility mapping (QSM) in the bilateral basal ganglia region in middle cerebral artery occlusion (MCAO) patients with long-term ischemia. Methods: Twenty-seven healthy controls and nine patients with MCAO were recruited, and their QSM images were obtained. The bilateral caudate nucleus (Cd), putamen (Pt), and globus pallidus (Gp) were selected as the regions of interest (ROIs). Susceptibility values of bilateral ROIs were calculated and compared between the affected side and unaffected side in patients with MCAO and between patients with MCAO and healthy controls. In addition, receiver operating characteristic (ROC) curves were performed to evaluate the diagnostic capability of susceptibility values in differentiating healthy controls and patients with MCAO by the area under the curve (AUC). Results: The susceptibility values of bilateral Cd were asymmetric in healthy controls; however, this asymmetry disappeared in patients with MCAO. In addition, compared with healthy controls, the average susceptibility values of the bilateral Pt in patients with MCAO were increased (P < 0.05), and the average susceptibility value of the bilateral Gp was decreased (P < 0.05). ROC curves showed that the susceptibility values of the Pt and Gp had a larger AUC (AUC = 0.700 and 0.889, respectively). Conclusion: As measured by QSM, the iron levels of the bilateral basal ganglia region were significantly changed in patients with MCAO. Iron dyshomeostasis in the basal ganglia region might be involved in the pathophysiological process of middle cerebral artery stenosis and occlusion. These findings may provide a novel insight to profoundly address the pathophysiological mechanisms of MCAO.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zifang Zhao
- Department of Anesthesiology, Peking University First Hospital, Peking University, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Liu
- Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Exercise ameliorates post-stroke depression by inhibiting PTEN elevation-mediated upregulation of TLR4/NF-κB/NLRP3 signaling in mice. Brain Res 2020; 1736:146777. [DOI: 10.1016/j.brainres.2020.146777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
|
20
|
Andrabi SS, Parvez S, Tabassum H. Ischemic stroke and mitochondria: mechanisms and targets. PROTOPLASMA 2020; 257:335-343. [PMID: 31612315 DOI: 10.1007/s00709-019-01439-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/30/2019] [Indexed: 05/05/2023]
Abstract
Stroke is one of the main causes of mortality and disability in most countries of the world. The only way of managing patients with ischemic stroke is the use of intravenous tissue plasminogen activator and endovascular thrombectomy. However, very few patients receive these treatments as the therapeutic time window is narrow after an ischemic stroke. The paucity of stroke management approaches can only be addressed by identifying new possible therapeutic targets. Mitochondria have been a rare target in the clinical management of stroke. Previous studies have only investigated the bioenergetics and apoptotic roles of this organelle; however, the mitochondrion is now considered as a key organelle that participates in many cellular and molecular functions. This review discusses the mitochondrial mechanisms in cerebral ischemia such as its role in reactive oxygen species (ROS) generation, apoptosis, and electron transport chain dysfunction. Understanding the mechanisms of mitochondria in neural cell death during ischemic stroke might help to design new therapeutic targets for ischemic stroke as well as other neurological diseases.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Heena Tabassum
- Division of Biomedical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, P.O. Box No. 4911, New Delhi, 110029, India
| |
Collapse
|
21
|
Electroacupuncture Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury by Increasing GSK-3 β Phosphorylation Level via Adenosine A1 Receptor. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6848450. [PMID: 32149120 PMCID: PMC7054798 DOI: 10.1155/2020/6848450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 01/19/2023]
Abstract
Objective To observe the effect of adenosine A1 receptor in the hippocampus of mice on GSK-3β phosphorylation level and elucidate the underlying mechanisms of electroacupuncture pretreatment by activating Α1 receptor mediating cerebral ischemia-reperfusion injury. Method The model of middle cerebral artery occlusion (MCAO) was established and grouped into electroacupuncture pretreatment group (EA group), MCAO group, and sham-operated group (Sham group). The neurobehavioral manifestation, the volume of cerebral infarction, and its related protein changes in mice in each group were observed. Then, adenosine Α1 receptor antagonist and agonist were injected intraperitoneally to observe the effects of A1 receptor on the phosphorylation level of GSK-3β phosphorylation level and elucidate the underlying mechanisms of electroacupuncture pretreatment by activating Α1 receptor mediating cerebral ischemia-reperfusion injury. Results (1) Compared with the MCAO group (24 hours after reperfusion), the infarct size in the EA group decreased significantly, and the Garcia neurological score and phosphorylation level of GSK-3β phosphorylation level and elucidate the underlying mechanisms of electroacupuncture pretreatment by activating Α1 receptor mediating cerebral ischemia-reperfusion injury. β phosphorylation level and elucidate the underlying mechanisms of electroacupuncture pretreatment by activating Α1 receptor mediating cerebral ischemia-reperfusion injury. β phosphorylation level and elucidate the underlying mechanisms of electroacupuncture pretreatment by activating Α1 receptor mediating cerebral ischemia-reperfusion injury. Conclusions Electroacupuncture pretreatment can increase GSK-3β phosphorylation level via activating A1 receptor, to protect neurons in ischemia-reperfusion injury.β phosphorylation level and elucidate the underlying mechanisms of electroacupuncture pretreatment by activating Α1 receptor mediating cerebral ischemia-reperfusion injury.
Collapse
|
22
|
Transient versus Permanent MCA Occlusion in Mice Genetically Modified to Have Good versus Poor Collaterals. ACTA ACUST UNITED AC 2019; 4. [PMID: 31840083 PMCID: PMC6910253 DOI: 10.20900/mo.20190024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collateral-dependent blood flow is capable of significantly lessening the severity of stroke. Unfortunately, collateral flow varies widely in patients for reasons that remain unclear. Studies in mice have shown that the number and diameter of cerebral collaterals vary widely due primarily to polymorphisms in genes, e.g., Rabep2, involved in their formation during development. However, understanding how variation in collateral abundance affects stroke progression has been hampered by lack of a method to reversibly ligate the distal middle cerebral artery (MCAO) in mice. Here we present a method and examine infarct volume 24 h after transient (tMCAO, 90 min) versus permanent occlusion (pMCAO) in mice with good versus poor collaterals. Wildtype C57BL/6 mice (have abundant collaterals) sustained small infarctions following tMCAO that increased 2.1-fold after pMCAO, reflecting significant penumbra present at 90 min. Mutant C57BL/6 mice lacking Rabep2 (have reduced collaterals) sustained a 4-fold increase in infarct volume over WT following tMCAO and a smaller additional increase (0.4-fold) after pMCAO, reflecting reduced penumbra. Wildtype BALB/cBy (have a deficient Rabep2 variant and poor collaterals) had large infarctions following tMCAO that increased less (0.6-fold) than the above wildtype C57BL/6 mice following pMCAO. Mutant BALB/cBy mice (have deficient Rabep2 replaced with the C57BL/6 variant thus increased collaterals) sustained smaller infarctions after tMCAO. However, unlike C57BL/6 versus Rabep2 mice, penumbra was not increased since infarct volume increased only 0.3-fold following pMCAO. These findings present a murine model of tMCAO and demonstrate that neuroprotective mechanisms, in addition to collaterals, also vary with genetic background and affect the evolution of stroke.
Collapse
|
23
|
Hort J, Vališ M, Kuča K, Angelucci F. Vascular Cognitive Impairment: Information from Animal Models on the Pathogenic Mechanisms of Cognitive Deficits. Int J Mol Sci 2019; 20:E2405. [PMID: 31096580 PMCID: PMC6566630 DOI: 10.3390/ijms20102405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of cognitive deficit after Alzheimer's disease. Since VCI patients represent an important target population for prevention, an ongoing effort has been made to elucidate the pathogenesis of this disorder. In this review, we summarize the information from animal models on the molecular changes that occur in the brain during a cerebral vascular insult and ultimately lead to cognitive deficits in VCI. Animal models cannot effectively represent the complex clinical picture of VCI in humans. Nonetheless, they allow some understanding of the important molecular mechanisms leading to cognitive deficits. VCI may be caused by various mechanisms and metabolic pathways. The pathological mechanisms, in terms of cognitive deficits, may span from oxidative stress to vascular clearance of toxic waste products (such as amyloid beta) and from neuroinflammation to impaired function of microglia, astrocytes, pericytes, and endothelial cells. Impaired production of elements of the immune response, such as cytokines, and vascular factors, such as insulin-like growth factor 1 (IGF-1), may also affect cognitive functions. No single event could be seen as being the unique cause of cognitive deficits in VCI. These events are interconnected, and may produce cascade effects resulting in cognitive impairment.
Collapse
Affiliation(s)
- Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic.
- International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Martin Vališ
- Department of Neurology, University Hospital Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 05 Hradec Kralove, Czech Republic.
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic.
| |
Collapse
|
24
|
Fréchou M, Margaill I, Marchand-Leroux C, Beray-Berthat V. Behavioral tests that reveal long-term deficits after permanent focal cerebral ischemia in mouse. Behav Brain Res 2018; 360:69-80. [PMID: 30500429 DOI: 10.1016/j.bbr.2018.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023]
Abstract
Efforts are still needed regarding the research of therapeutics for ischemic stroke. While in experimental studies the protective effect of pharmacological agents is often highlighted by a reduction of the lesion size evaluated in the short term (days), in clinical studies a functional recovery of patients suffering from stroke is expected on the long-term (months and years). Long-term functional preclinical studies are highly recommended to evaluate potential neuroprotective agents for stroke, rather than an assessment of the infarction size at a short time point. The present study thus aimed to select among various behavioral tests those able to highlight long-term deficits (3 months) after cerebral ischemia in mice. Permanent focal cerebral ischemia was carried out in male Swiss mice by intraluminal occlusion of the left middle cerebral artery (MCA). Fourteen behavioral tests were assessed from 7 days to 90 days after ischemia (locomotor activity, neurological score, exit circle test, grip and string tests, chimney test, adhesive removal test, pole test, beam-walking tests, elevated plus maze, marble burying test, forced swimming test, novel object recognition test). The present study clearly identified a battery of behavioral tests able to highlight deficits up to 3 months in our mouse model of permanent MCA occlusion (locomotor activity, neurological score, adhesive removal test, pole test, beam-walking tests, elevated plus maze, marble burying test, forced swimming test and novel object recognition test). This battery of behavioral tests highlighting long-term deficits is useful to study future neuroprotective strategies for stroke treatment.
Collapse
Affiliation(s)
- Magalie Fréchou
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Isabelle Margaill
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Catherine Marchand-Leroux
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| | - Virginie Beray-Berthat
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA 4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France.
| |
Collapse
|
25
|
Baumgartner P, El Amki M, Bracko O, Luft AR, Wegener S. Sensorimotor stroke alters hippocampo-thalamic network activity. Sci Rep 2018; 8:15770. [PMID: 30361495 PMCID: PMC6202365 DOI: 10.1038/s41598-018-34002-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
Many stroke survivors experience persisting episodic memory disturbances. Since hippocampal and para-hippocampal areas are usually spared from the infarcted area, alterations of memory processing networks remote from the ischemic brain region might be responsible for the observed clinical symptoms. To pinpoint changes in activity of hippocampal connections and their role in post-stroke cognitive impairment, we induced ischemic stroke by occlusion of the middle cerebral artery (MCAO) in adult rats and analyzed the functional and structural consequences using activity-dependent manganese (Mn2+) enhanced MRI (MEMRI) along with behavioral and histopathological analysis. MCAO caused stroke lesions of variable extent along with sensorimotor and cognitive deficits. Direct hippocampal injury occurred in some rats, but was no prerequisite for cognitive impairment. In healthy rats, injection of Mn2+ into the entorhinal cortex resulted in distribution of the tracer within the hippocampal subfields into the lateral septal nuclei. In MCAO rats, Mn2+ accumulated in the ipsilateral thalamus. Histopathological analysis revealed secondary thalamic degeneration 28 days after stroke. Our findings provide in vivo evidence that remote sensorimotor stroke modifies the activity of hippocampal-thalamic networks. In addition to potentially reversible alterations in signaling of these connections, structural damage of the thalamus likely reinforces dysfunction of hippocampal-thalamic circuitries.
Collapse
Affiliation(s)
- Philipp Baumgartner
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Oliver Bracko
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853, United States
| | - Andreas R Luft
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, Zurich, 8006, Switzerland.
| |
Collapse
|
26
|
Long non-coding RNA RMST silencing protects against middle cerebral artery occlusion (MCAO)-induced ischemic stroke. Biochem Biophys Res Commun 2018; 495:2602-2608. [DOI: 10.1016/j.bbrc.2017.12.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 01/05/2023]
|
27
|
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the Alignment of the Preclinical and Clinical Stroke Recovery Research Pipeline: Consensus-Based Core Recommendations From the Stroke Recovery and Rehabilitation Roundtable Translational Working Group. Neurorehabil Neural Repair 2017; 31:699-707. [DOI: 10.1177/1545968317724285] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.
Collapse
Affiliation(s)
- Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - S. Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Timothy H. Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Theresa A. Jones
- Department of Psychology and Neuroscience Institute, University of Texas at Austin, Austin, TX, USA
| | - Martin E. Schwab
- Institute for Brain Research, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Numa Dancause
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Tadeusz Weiloch
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund, Sweden
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Headington, Oxford, UK
| | - Michael Nilsson
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Mary T. Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Protective Effects of Spatholobi Caulis Extract on Neuronal Damage and Focal Ischemic Stroke/Reperfusion Injury. Mol Neurobiol 2017; 55:4650-4666. [DOI: 10.1007/s12035-017-0652-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/11/2017] [Indexed: 01/26/2023]
|
29
|
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable translational working group. Int J Stroke 2017; 12:462-471. [DOI: 10.1177/1747493017711814] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.
Collapse
Affiliation(s)
- Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Theresa A Jones
- Department of Psychology and Neuroscience Institute, University of Texas at Austin, Austin, TX, USA
| | - Martin E Schwab
- Institute for Brain Research, University of Zurich
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Numa Dancause
- Groupe de Recherche sur le Système Nerveux central (GRSNC), Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Tadeusz Weiloch
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund, Sweden
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Headington, Oxford, UK
| | - Michael Nilsson
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Mary T Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Sasaki K, Mutoh T, Nakamura K, Kojima I, Taki Y, Suarez JI, Ishikawa T. MRI-based in vivo assessment of early cerebral infarction in a mouse filament perforation model of subarachnoid hemorrhage. Neurosci Lett 2017; 653:173-176. [PMID: 28552456 DOI: 10.1016/j.neulet.2017.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND PURPOSE Experimental subarachnoid hemorrhage (SAH) by endovascular filament perforation method is used widely in mice, but it sometimes present acute cerebral infarctions with varied magnitude and anatomical location. This study aimed to determine the prevalence and location of the acute ischemic injury in this experimental model. METHODS Male C57BL/6 mice were subjected to SAH by endovascular perforation. Distribution of SAH was defined by T2*-weighted images within 1h after SAH. Prevalence and location of acute infarction were assessed by diffusion-weighted MR images on day 1 after the induction. RESULTS Among 72 mice successfully acquired post-SAH MR images, 29 (40%) developed acute infarction. Location of the infarcts was classified into either single infarct (ipsilateral cortex, n=12; caudate putamen, n=3; hippocampus, n=1) or multiple lesions (cortex and caudate putamen, n=6; cortex and hippocampus, n=2; cortex, hippocampus and thalamus/hypothalamus, n=3; bilateral cortex, n=2). The mortality rate within 24h was significantly higher in mice with multiple infarcts than those with single lesion (30% versus 0%; P=0.03). Distribution of the ischemic lesion positively correlated with MRI-evidenced SAH grading (r2=0.31, P=0.0002). CONCLUSION Experimental SAH immediately after the vessel perforation can induce acute cerebral infarction in varying vascular territories, resulting in increased mortality. The present model may in part, help researchers to interpret the mechanism of clinically-evidenced early multiple combined infarction.
Collapse
Affiliation(s)
- Kazumasu Sasaki
- Research Institute for Brain and Blood Vessels-AKITA, Akita, Japan; Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tatsushi Mutoh
- Research Institute for Brain and Blood Vessels-AKITA, Akita, Japan; Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | - Ikuho Kojima
- Research Institute for Brain and Blood Vessels-AKITA, Akita, Japan; Department of Oral Diagnosis & Radiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yasuyuki Taki
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jose Ignacio Suarez
- Department of Neurology-Vascular Neurology and Neurocritical Care, Baylor College of Medicine, Houston, TX, USA
| | - Tatsuya Ishikawa
- Research Institute for Brain and Blood Vessels-AKITA, Akita, Japan
| |
Collapse
|
31
|
Auletta L, Greco A, Albanese S, Meomartino L, Salvatore M, Mancini M. Original Research: Feasibility and safety of two surgical techniques for the development of an animal model of jugular vein occlusion. Exp Biol Med (Maywood) 2016; 242:22-28. [PMID: 27385594 DOI: 10.1177/1535370216657446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022] Open
Abstract
To date, no studies have explored the effect of abnormal cerebral venous circulation on brain disorders, whereas many studies have investigated neurodegenerative brain anomalies associated with arterial diseases. The aim of our study was to demonstrate the feasibility of different surgical techniques to induce venous obstruction of cerebral brain drainage. Six C57/black mice underwent bilateral occlusion of the external jugular vein (group EJV), six underwent bilateral occlusion of the internal jugular vein (group IJV), and six underwent bilateral occlusion of both the EJV and the IJV (group EJV/IJV). Within each group, the interruption of blood flow was obtained via monopolar electro-coagulation (ME) in three mice and via surgical ligation (SL) in the remaining three mice. A "sham group" of two mice was used as the control. High-frequency ultrasound (HFUS) was used to detect the absence of blood flow in the examined vessel. The ME procedure led to successful results in two of nine (22%) mice, one in the EJV group, one in the EJV/IJV group, and zero in the IJV group, and 4 of 18 (22%) mice when considering individual veins (i.e., total number of EJVs and IJVs occluded). The SL procedure was successful in two of three (67%) mice in the EJV group, in three of three (100%) mice in the IJV and in three of four (75%) mice in the EJV/IJV group. Therefore, the overall success rate was 8/10 (80%) when considering mice, and 20/26 (77%) when considering individual veins. The monopolar electro-coagulation method exhibited a high mortality due to cardiorespiratory arrest, while the results of the bilateral surgical ligation of EJVs and IJVs show that it is technically feasible and safe.
Collapse
Affiliation(s)
| | - Adelaide Greco
- Dipartimento di Scienze Biomediche Avanzate, Università di Napoli Federico II, Napoli 80131, Italy .,CEINGE Biotecnologie Avanzate, Scarl, Napoli 80145, Italy.,IBB, CNR, Napoli 80145, Italy
| | - Sandra Albanese
- Dipartimento di Scienze Biomediche Avanzate, Università di Napoli Federico II, Napoli 80131, Italy.,CEINGE Biotecnologie Avanzate, Scarl, Napoli 80145, Italy
| | - Leonardo Meomartino
- Dipartimento di Medicina veterinaria e Produzioni animali, Università di Napoli Federico II, Napoli 80137, Italy
| | | | | |
Collapse
|
32
|
Gu J, Chen J, Yang N, Hou X, Wang J, Tan X, Feng L, Jia X. Combination of Ligusticum chuanxiong and Radix Paeoniae ameliorate focal cerebral ischemic in MCAO rats via endoplasmic reticulum stress-dependent apoptotic signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:313-324. [PMID: 27108052 DOI: 10.1016/j.jep.2016.04.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Combination of Ligusticum chuanxiong and Radix Paeoniae (XS) is highly effective in the treatment for focal cerebral ischemic, but the underlying mechanism is not clear. This study was conducted to evaluate the combinative effects of XS on MCAO rats and explore the underlying mechanisms. MATERIALS AND METHODS MCAO rats were used to evaluate the protective effect of Ligusticum chuanxiong (CX), Radix Paeoniae Rubra (CS) and their combination (XS) on ameliorating focal cerebral ischemic. Cerebral ischemia deficits and infarct size were performed by 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (H-E) staining. Activities of SOD, CAT and GSH-Px, as well as levels of LPO and MDA were detected by commercial kits while ELISA kits for the content of plasminogen activator inhibitor-1 (PAI-1) and plasminogen activator (PA). Immunohistochemistry (IHC) and western blot analysis (WB) were carried out to examine the protein expressions including PKR-like endoplasmic reticulum kinase (PERK), cytoplasmic of glucose regulated protein 78 (GRP78), X box-binding protein-1 (XBP-1), activating transcription factor-6 (ATF-6), C/EBP-homologous protein (CHOP), metalloprotease-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), Bcl-2 associated X protein (Bax), and porcineB-cellleukemia/lymphoma-2 (Bcl-2) in brain tissues. Reverse transcription polymerase chain reaction (RT-PCR) and Quantitative PCR (Q-PCR) were applied to examine vascular endothelial growth factor (VEGF) and N-methyl-d-aspartate receptors (NMDAR1) mRNA levels. RESULTS CX, CS and their combination (XS) could reduce cerebral ischemia deficits and infarct size of MCAO rats. They increased SOD, CAT and GSH-Px activities, and reduced MDA and LPO levels in serum, markedly. A significant decrease of endoplasmic reticulum stress-related factors PERK, XBP-1, ATF-6 and CHOP protein expression levels while an increase of GRP78 and MVD expression by the treatment of CX, CS and XS. It could also be observed that their treatment could reduce apoptotic damage of brain tissues by up-regulating Bax level and down-regulating Bcl-2 level. Furthermore, the levels of MMP-9 and PAI-1 in serum and tissues of rats were down-regulated remarkably while TIMP-1 and PA levels were up-regulated. VEGF mRNA level was up-regulated dramatically whereas NMDAR1 was reduced. Importantly, the combination of CX and CS, namely XS, has a more meaningful improvement on focal cerebral ischemic than CX or CS alone. CONCLUSION All these revealed that the combined XS exerted more remarkable protective effects than alone. XS could inhibit neuronal apoptosis by attenuating ER-stress-dependent apoptotic signaling and protected the blood-brain barrier. These findings might supply beneficial hints for the synergy of CX and CS, and provide the basis for rationality of XS preparation and deserve further clinical investigations.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Juan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Nan Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Xuefeng Hou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Xiaobin Tan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China
| | - Liang Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China.
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, PR China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu 210028, PR China.
| |
Collapse
|
33
|
Bourourou M, Heurteaux C, Blondeau N. Alpha-linolenic acid given as enteral or parenteral nutritional intervention against sensorimotor and cognitive deficits in a mouse model of ischemic stroke. Neuropharmacology 2016; 108:60-72. [PMID: 27133376 DOI: 10.1016/j.neuropharm.2016.04.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 02/03/2023]
Abstract
Stroke is a leading cause of disability and death worldwide. Numerous therapeutics applied acutely after stroke have failed to improve long-term clinical outcomes. An emerging direction is nutritional intervention with omega-3 polyunsaturated fatty acids acting as disease-modifying factors and targeting post-stroke disabilities. Our previous studies demonstrated that the omega-3 precursor, alpha-linolenic acid (ALA) administrated by injections or dietary supplementation reduces stroke damage by direct neuroprotection, and triggering brain artery vasodilatation and neuroplasticity. Successful translation of putative therapies will depend on demonstration of robust efficacy on common deficits resulting from stroke like loss of motor control and memory/learning. This study evaluated the value of ALA as adjunctive therapy for stroke recovery by comparing whether oral or intravenous supplementation of ALA best support recovery from ischemia. Motor and cognitive deficits were assessed using rotarod, pole and Morris water maze tests. ALA supplementation in diet was better than intravenous treatment in improving motor coordination, but this improvement was not due to a neuroprotective effect since infarct size was not reduced. Both types of ALA supplementation improved spatial learning and memory after stroke. This cognitive improvement correlated with higher survival of hippocampal neurons. These results support clinical investigation establishing therapeutic plans using ALA supplementation.
Collapse
Affiliation(s)
- Miled Bourourou
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Catherine Heurteaux
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Nicolas Blondeau
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France.
| |
Collapse
|
34
|
Morris GP, Wright AL, Tan RP, Gladbach A, Ittner LM, Vissel B. A Comparative Study of Variables Influencing Ischemic Injury in the Longa and Koizumi Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Mice. PLoS One 2016; 11:e0148503. [PMID: 26870954 PMCID: PMC4752454 DOI: 10.1371/journal.pone.0148503] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
The intraluminal filament model of middle cerebral artery occlusion (MCAO) in mice and rats has been plagued by inconsistency, owing in part to the multitude of variables requiring control. In this study we investigated the impact of several major variables on survival rate, lesion volume, neurological scores, cerebral blood flow (CBF) and body weight including filament width, time after reperfusion, occlusion time and the choice of surgical method. Using the Koizumi method, we found ischemic injury can be detected as early as 30 min after reperfusion, to a degree that is not statistically different from 24 h post-perfusion, using 2,3,5-Triphenyltetrazolium chloride (TTC) staining. We also found a distinct increase in total lesion volume with increasing occlusion time, with 30–45 min a critical time for the development of large, reproducible lesions. Furthermore, although we found no significant difference in total lesion volume generated by the Koizumi and Longa methods of MCAO, nor were survival rates appreciably different between the two at 4 h after reperfusion, the Longa method produces significantly greater reperfusion. Finally, we found no statistical evidence to support the exclusion of data from animals experiencing a CBF reduction of <70% in the MCA territory following MCAO, using laser-Doppler flowmetry. Instead we suggest the main usefulness of laser-Doppler flowmetry is for guiding filament placement and the identification of subarachnoid haemorrhages and premature reperfusion. In summary, this study provides detailed evaluation of the Koizumi method of intraluminal filament MCAO in mice and a direct comparison to the Longa method.
Collapse
Affiliation(s)
- Gary P Morris
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Amanda L Wright
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Sydney, Australia
| | - Richard P Tan
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Sydney, Australia.,Heart Research Institute, 2042 New South Wales, Sydney, Australia
| | - Amadeus Gladbach
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Lars M Ittner
- Dementia Research Unit, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Bryce Vissel
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia.,Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|