1
|
A dark quencher genetically encodable voltage indicator (dqGEVI) exhibits high fidelity and speed. Proc Natl Acad Sci U S A 2021; 118:2020235118. [PMID: 33531364 PMCID: PMC8017929 DOI: 10.1073/pnas.2020235118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Voltage sensing with genetically expressed optical probes is highly desirable for large-scale recordings of neuronal activity and detection of localized voltage signals in single neurons. Here we describe a method for a two-component (hybrid) genetically encodable fluorescent voltage sensing in neurons. The approach uses a glycosylphosphatidylinositol-tagged fluorescent protein (enhanced green fluorescent protein) that ensures the fluorescence to be specifically confined to the outside of the plasma membrane and D3, a voltage-dependent quencher. Previous hybrid genetically encoded voltage sensing approaches relied on a single quenching molecule, dipycrilamine (DPA), which is toxic, increases membrane capacitance, interferes with neurotransmitters, and is explosive. Our method uses a nontoxic and nonexplosive compound that performs better than DPA in all aspects of fluorescent voltage sensing. Voltage sensing with genetically expressed optical probes is highly desirable for large-scale recordings of neuronal activity and detection of localized voltage signals in single neurons. Most genetically encodable voltage indicators (GEVI) have drawbacks including slow response, low fluorescence, or excessive bleaching. Here we present a dark quencher GEVI approach (dqGEVI) using a Förster resonance energy transfer pair between a fluorophore glycosylphosphatidylinositol–enhanced green fluorescent protein (GPI-eGFP) on the outer surface of the neuronal membrane and an azo-benzene dye quencher (D3) that rapidly moves in the membrane driven by voltage. In contrast to previous probes, the sensor has a single photon bleaching time constant of ∼40 min, has a high temporal resolution and fidelity for detecting action potential firing at 100 Hz, resolves membrane de- and hyperpolarizations of a few millivolts, and has negligible effects on passive membrane properties or synaptic events. The dqGEVI approach should be a valuable tool for optical recordings of subcellular or population membrane potential changes in nerve cells.
Collapse
|
2
|
Inoue T. TI Workbench, an integrated software package for electrophysiology and imaging. Microscopy (Oxf) 2018; 67:129-143. [PMID: 29554288 DOI: 10.1093/jmicro/dfy015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/23/2018] [Indexed: 11/14/2022] Open
Abstract
TI Workbench is a software package that serves as a control and analysis center for cellular imaging and electrophysiological experiments. It is unique among general-purpose software packages where it integrates the control of cellular imaging and electrophysiological devices, as well as sophisticated data analyses, which provides superior usability in imaging experiments combined with electrophysiology. During the development over the last 20 years, the range of supported image acquisition devices has expanded from cooled charge-coupled device (CCD) cameras to multi-photon microscope systems. In this review, I outline the concept of TI Workbench together with its unique functions and features derived from ideas emerging during daily experiments in my own lab and in those of my collaborators over the last 20 years. TI Workbench includes standard functions required for time-lapse multicolor fluorescence imaging and electrophysiological experiments, in addition to specialized functions such as random-scan or conventional raster-scan two-photon microscopy packages and fluorescence life time imaging (FLIM) utilities. Data analysis modules, e.g. digital data filters for temporal waveforms of time-lapse image data and electrophysiology and for 2-D image data, and fluorescence correlation spectroscopy (FCS) analysis functions, are well integrated with data acquisition functions. A notebook function holds formatted text, graphs, image and movie data altogether, which are linked to the actual data files. TI Workbench uses Igor Pro software as a back-end output for publishing. In addition, TI Workbench imports several different formats of image and electrophysiology data, serving as a general-purpose data analysis software package.
Collapse
Affiliation(s)
- Takafumi Inoue
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
3
|
Heidarinejad M, Nakamura H, Inoue T. Stimulation-induced changes in diffusion and structure of calmodulin and calmodulin-dependent protein kinase II proteins in neurons. Neurosci Res 2018; 136:13-32. [PMID: 29395358 DOI: 10.1016/j.neures.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) and calmodulin (CaM) play essential roles in synaptic plasticity, which is an elementary process of learning and memory. In this study, fluorescence correlation spectroscopy (FCS) revealed diffusion properties of CaM, CaMKIIα and CaMKIIβ proteins in human embryonic kidney 293 (HEK293) cells and hippocampal neurons. A simultaneous multiple-point FCS recording system was developed on a random-access two-photon microscope, which facilitated efficient analysis of molecular dynamics in neuronal compartments. The diffusion of CaM in neurons was slower than that in HEK293 cells at rest, while the diffusion in stimulated neurons was accelerated and indistinguishable from that in HEK293 cells. This implied that activity-dependent binding partners of CaM exist in neurons, which slow down the diffusion at rest. Diffusion properties of CaMKIIα and β proteins implied that major populations of these proteins exist as holoenzymatic forms. Upon stimulation of neurons, the diffusion of CaMKIIα and β proteins became faster with reduced particle brightness, indicating drastic structural changes of the proteins such as dismissal from holoenzyme structure and further fragmentation.
Collapse
Affiliation(s)
- Morteza Heidarinejad
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
4
|
LeBlanc BW, Cross B, Smith KA, Roach C, Xia J, Chao YC, Levitt J, Koyama S, Moore CI, Saab CY. Thalamic Bursts Down-regulate Cortical Theta and Nociceptive Behavior. Sci Rep 2017; 7:2482. [PMID: 28559582 PMCID: PMC5449396 DOI: 10.1038/s41598-017-02753-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/18/2017] [Indexed: 12/24/2022] Open
Abstract
We tested the relation between pain behavior, theta (4-8 Hz) oscillations in somatosensory cortex and burst firing in thalamic neurons in vivo. Optically-induced thalamic bursts attenuated cortical theta and mechanical allodynia. It is proposed that thalamic bursts are an adaptive response to pain that de-synchronizes cortical theta and decreases sensory salience.
Collapse
Affiliation(s)
- Brian W LeBlanc
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Brent Cross
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Kelsey A Smith
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Catherine Roach
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Jimmy Xia
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Yu-Chieh Chao
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Joshua Levitt
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Suguru Koyama
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
- Laboratory for Pharmacology, Asahi KASEI Pharma Corporation, Shizuoka, Japan
| | | | - Carl Y Saab
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.
- Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Sakuragi S, Niwa F, Oda Y, Mikoshiba K, Bannai H. Astroglial Ca 2+ signaling is generated by the coordination of IP 3R and store-operated Ca 2+ channels. Biochem Biophys Res Commun 2017; 486:879-885. [PMID: 28336440 DOI: 10.1016/j.bbrc.2017.03.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/19/2017] [Indexed: 12/21/2022]
Abstract
Astrocytes play key roles in the central nervous system and regulate local blood flow and synaptic transmission via intracellular calcium (Ca2+) signaling. Astrocytic Ca2+ signals are generated by multiple pathways: Ca2+ release from the endoplasmic reticulum (ER) via the inositol 1, 4, 5-trisphosphate receptor (IP3R) and Ca2+ influx through various Ca2+ channels on the plasma membrane. However, the Ca2+ channels involved in astrocytic Ca2+ homeostasis or signaling have not been fully characterized. Here, we demonstrate that spontaneous astrocytic Ca2+ transients in cultured hippocampal astrocytes were induced by cooperation between the Ca2+ release from the ER and the Ca2+ influx through store-operated calcium channels (SOCCs) on the plasma membrane. Ca2+ imaging with plasma membrane targeted GCaMP6f revealed that spontaneous astroglial Ca2+ transients were impaired by pharmacological blockade of not only Ca2+ release through IP3Rs, but also Ca2+ influx through SOCCs. Loss of SOCC activity resulted in the depletion of ER Ca2+, suggesting that SOCCs are activated without store depletion in hippocampal astrocytes. Our findings indicate that sustained SOCC activity, together with that of the sarco-endoplasmic reticulum Ca2+-ATPase, contribute to the maintenance of astrocytic Ca2+ store levels, ultimately enabling astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Shigeo Sakuragi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Fumihiro Niwa
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoichi Oda
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Hiroko Bannai
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan; Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Nagoya Research Center for Brain & Neural Circuits, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8602, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
6
|
Dissection of local Ca(2+) signals inside cytosol by ER-targeted Ca(2+) indicator. Biochem Biophys Res Commun 2016; 479:67-73. [PMID: 27616195 DOI: 10.1016/j.bbrc.2016.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022]
Abstract
Calcium (Ca(2+)) is a versatile intracellular second messenger that operates in various signaling pathways leading to multiple biological outputs. The diversity of spatiotemporal patterns of Ca(2+) signals, generated by the coordination of Ca(2+) influx from the extracellular space and Ca(2+) release from the intracellular Ca(2+) store the endoplasmic reticulum (ER), is considered to underlie the diversity of biological outputs caused by a single signaling molecule. However, such Ca(2+) signaling diversity has not been well described because of technical limitations. Here, we describe a new method to report Ca(2+) signals at subcellular resolution. We report that OER-GCaMP6f, a genetically encoded Ca(2+) indicator (GECI) targeted to the outer ER membrane, can monitor Ca(2+) release from the ER at higher spatiotemporal resolution than conventional GCaMP6f. OER-GCaMP6f was used for in vivo Ca(2+) imaging of C. elegans. We also found that the spontaneous Ca(2+) elevation in cultured astrocytes reported by OER-GCaMP6f showed a distinct spatiotemporal pattern from that monitored by plasma membrane-targeted GCaMP6f (Lck-GCaMP6f); less frequent Ca(2+) signal was detected by OER-GCaMP6f, in spite of the fact that Ca(2+) release from the ER plays important roles in astrocytes. These findings suggest that targeting of GECIs to the ER outer membrane enables sensitive detection of Ca(2+) release from the ER at subcellular resolution, avoiding the diffusion of GECI and Ca(2+). Our results indicate that Ca(2+) imaging with OER-GCaMP6f in combination with Lck-GCaMP6f can contribute to describing the diversity of Ca(2+) signals, by enabling dissection of Ca(2+) signals at subcellular resolution.
Collapse
|