1
|
Lecrux C, Sandoe CH, Neupane S, Kropf P, Toussay X, Tong XK, Lacalle-Aurioles M, Shmuel A, Hamel E. Impact of Altered Cholinergic Tones on the Neurovascular Coupling Response to Whisker Stimulation. J Neurosci 2017; 37:1518-1531. [PMID: 28069927 PMCID: PMC6705676 DOI: 10.1523/jneurosci.1784-16.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022] Open
Abstract
Brain imaging techniques that use vascular signals to map changes in neuronal activity rely on the coupling between electrophysiology and hemodynamics, a phenomenon referred to as "neurovascular coupling" (NVC). It is unknown whether this relationship remains reliable under altered brain states associated with acetylcholine (ACh) levels, such as attention and arousal and in pathological conditions such as Alzheimer's disease. We therefore assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex, measured by cerebral blood flow (CBF) and neurophysiological recordings (local field potentials, LFPs). We found that acutely enhanced ACh tone significantly potentiated whisker-evoked CBF responses through muscarinic ACh receptors and concurrently facilitated neuronal responses, as illustrated by increases in the amplitude and power in high frequencies of the evoked LFPs. However, the cellular identity of the activated neuronal network within the responsive barrel was unchanged, as characterized by c-Fos upregulation in pyramidal cells and GABA interneurons coexpressing vasoactive intestinal polypeptide. In contrast, chronic ACh deprivation hindered whisker-evoked CBF responses and the amplitude and power in most frequency bands of the evoked LFPs and reduced the rostrocaudal extent and area of the activated barrel without altering its identity. Correlations between LFP power and CBF, used to estimate NVC, were enhanced under high ACh tone and disturbed significantly by ACh depletion. We conclude that ACh is not only a facilitator but also a prerequisite for the full expression of sensory-evoked NVC responses, indicating that ACh may alter the fidelity of hemodynamic signals in assessing changes in evoked neuronal activity.SIGNIFICANCE STATEMENT Neurovascular coupling, defined as the tight relationship between activated neurons and hemodynamic responses, is a fundamental brain function that underlies hemodynamic-based functional brain imaging techniques. However, the impact of altered brain states on this relationship is largely unknown. We therefore investigated how acetylcholine (ACh), known to drive brain states of attention and arousal and to be deficient in pathologies such as Alzheimer's disease, would alter neurovascular coupling responses to sensory stimulation. Whereas acutely increased ACh enhanced neuronal responses and the resulting hemodynamic signals, chronic loss of cholinergic input resulted in dramatic impairments in both types of sensory-evoked signals. We conclude that ACh is not only a potent modulator but also a requirement for the full expression of sensory-evoked neurovascular coupling responses.
Collapse
Affiliation(s)
- Clotilde Lecrux
- Laboratory of Cerebrovascular Research and
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | | - Sujaya Neupane
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | - Pascal Kropf
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | | | | | | - Amir Shmuel
- Laboratory of Brain Imaging Signals, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
2
|
Bruyns-Haylett M, Luo J, Kennerley AJ, Harris S, Boorman L, Milne E, Vautrelle N, Hayashi Y, Whalley BJ, Jones M, Berwick J, Riera J, Zheng Y. The neurogenesis of P1 and N1: A concurrent EEG/LFP study. Neuroimage 2016; 146:575-588. [PMID: 27646129 PMCID: PMC5312787 DOI: 10.1016/j.neuroimage.2016.09.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/19/2016] [Accepted: 09/15/2016] [Indexed: 10/29/2022] Open
Abstract
It is generally recognised that event related potentials (ERPs) of electroencephalogram (EEG) primarily reflect summed post-synaptic activity of the local pyramidal neural population(s). However, it is still not understood how the positive and negative deflections (e.g. P1, N1 etc) observed in ERP recordings are related to the underlying excitatory and inhibitory post-synaptic activity. We investigated the neurogenesis of P1 and N1 in ERPs by pharmacologically manipulating inhibitory post-synaptic activity in the somatosensory cortex of rodent, and concurrently recording EEG and local field potentials (LFPs). We found that the P1 wave in the ERP and LFP of the supragranular layers is determined solely by the excitatory post-synaptic activity of the local pyramidal neural population, as is the initial segment of the N1 wave across cortical depth. The later part of the N1 wave was modulated by inhibitory post-synaptic activity, with its peak and the pulse width increasing as inhibition was reduced. These findings suggest that the temporal delay of inhibition with respect to excitation observed in intracellular recordings is also reflected in extracellular field potentials (FPs), resulting in a temporal window during which only excitatory post-synaptic activity and leak channel activity are recorded in the ERP and evoked LFP time series. Based on these findings, we provide clarification on the interpretation of P1 and N1 in terms of the excitatory and inhibitory post-synaptic activities of the local pyramidal neural population(s).
Collapse
Affiliation(s)
- Michael Bruyns-Haylett
- School of Systems Engineering, Whiteknights, University of Reading, Reading RG6 7AY, United Kingdom.
| | - Jingjing Luo
- School of Systems Engineering, Whiteknights, University of Reading, Reading RG6 7AY, United Kingdom.
| | - Aneurin J Kennerley
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom
| | - Sam Harris
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom
| | - Luke Boorman
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom
| | - Elizabeth Milne
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom
| | - Nicolas Vautrelle
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom
| | - Yurie Hayashi
- School of Systems Engineering, Whiteknights, University of Reading, Reading RG6 7AY, United Kingdom
| | - Benjamin J Whalley
- School of Systems Engineering, Whiteknights, University of Reading, Reading RG6 7AY, United Kingdom
| | - Myles Jones
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, United Kingdom
| | - Jorge Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Ying Zheng
- School of Systems Engineering, Whiteknights, University of Reading, Reading RG6 7AY, United Kingdom.
| |
Collapse
|