1
|
Beyh A, Howells H, Giampiccolo D, Cancemi D, De Santiago Requejo F, Citro S, Keeble H, Lavrador JP, Bhangoo R, Ashkan K, Dell'Acqua F, Catani M, Vergani F. Connectivity defines the distinctive anatomy and function of the hand-knob area. Brain Commun 2024; 6:fcae261. [PMID: 39239149 PMCID: PMC11375856 DOI: 10.1093/braincomms/fcae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/19/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Control of the hand muscles during fine digit movements requires a high level of sensorimotor integration, which relies on a complex network of cortical and subcortical hubs. The components of this network have been extensively studied in human and non-human primates, but discrepancies in the findings obtained from different mapping approaches are difficult to interpret. In this study, we defined the cortical and connectional components of the hand motor network in the same cohort of 20 healthy adults and 3 neurosurgical patients. We used multimodal structural magnetic resonance imaging (including T1-weighted imaging and diffusion tractography), as well as functional magnetic resonance imaging and navigated transcranial magnetic stimulation (nTMS). The motor map obtained from nTMS compared favourably with the one obtained from functional magnetic resonance imaging, both of which overlapped well within the 'hand-knob' region of the precentral gyrus and in an adjacent region of the postcentral gyrus. nTMS stimulation of the precentral and postcentral gyri led to motor-evoked potentials in the hand muscles in all participants, with more responses recorded from precentral stimulations. We also observed that precentral stimulations tended to produce motor-evoked potentials with shorter latencies and higher amplitudes than postcentral stimulations. Tractography showed that the region of maximum overlap between terminations of precentral-postcentral U-shaped association fibres and somatosensory projection tracts colocalizes with the functional motor maps. The relationships between the functional maps, and between them and the tract terminations, were replicated in the patient cohort. Three main conclusions can be drawn from our study. First, the hand-knob region is a reliable anatomical landmark for the functional localization of fine digit movements. Second, its distinctive shape is determined by the convergence of highly myelinated long projection fibres and short U-fibres. Third, the unique role of the hand-knob area is explained by its direct action on the spinal motoneurons and the access to high-order somatosensory information for the online control of fine movements. This network is more developed in the hand region compared to other body parts of the homunculus motor strip, and it may represent an important target for enhancing motor learning during early development.
Collapse
Affiliation(s)
- Ahmad Beyh
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Henrietta Howells
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neurosurgery, Institute of Neurosciences, Cleveland Clinic London, London SW1X 7HY, UK
| | - Daniele Cancemi
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | | | - Hannah Keeble
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Ranjeev Bhangoo
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Francesco Vergani
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| |
Collapse
|
2
|
Zhang H, Zhang W, Ohlerth A, Schwendner M, Schröder A, Meyer B, Krieg SM, Ille S. Motor mapping of the hand muscles using peripheral innervation-based navigated transcranial magnetic stimulation to identify functional reorganization of primary motor regions in malignant tumors. Hum Brain Mapp 2024; 45:e26642. [PMID: 38433701 PMCID: PMC10910269 DOI: 10.1002/hbm.26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Tumor-related motor reorganization remains unclear. Navigated transcranial magnetic stimulation (nTMS) can investigate plasticity non-invasively. nTMS-induced motor-evoked potentials (MEPs) of different muscles are commonly used to measure the center of gravity (CoG), the location with the highest density of corticospinal neurons in the precentral gyrus. We hypothesized that a peripheral innervation-based MEP analysis could outline the tumor-induced motor reorganization with a higher clinical and oncological relevance. Then, 21 patients harboring tumors inside the left corticospinal tract (CST) or precentral gyrus were enrolled in group one (G1), and 24 patients with tumors outside the left CST or precentral gyrus were enrolled in Group 2 (G2). Median- and ulnar-nerve-based MEP analysis combined with diffusion tensor imaging fiber tracking was used to explore motor function distribution. There was no significant difference in CoGs or size of motor regions and underlying tracts between G1 and G2. However, G1 involved a sparser distribution of motor regions and more motor-positive sites in the supramarginal gyrus-tumors inside motor areas induced motor reorganization. We propose an "anchor-and-ship theory" hypothesis for this process of motor reorganization: motor CoGs are stably located in the cortical projection area of the CST, like a seated anchor, as the core area for motor output. Primary motor regions can relocate to nearby gyri via synaptic plasticity and association fibers, like a ship moving around its anchor. This principle can anticipate functional reorganization and be used as a neuro-oncological tool for local therapy, such as radiotherapy or surgery.
Collapse
Affiliation(s)
- Haosu Zhang
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
| | - Wei Zhang
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
| | - Ann‐Katrin Ohlerth
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Center for Language and Cognition GroningenUniversity of GroningenGroningenNetherlands
| | - Maximilian Schwendner
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
| | - Axel Schröder
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
| | - Bernhard Meyer
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
| | - Sandro M. Krieg
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
- TUM‐Neuroimaging CenterTechnical University of Munich, School of MedicineMunichGermany
| | - Sebastian Ille
- Department of NeurosurgeryTechnical University of Munich, School of MedicineMunichGermany
- Department of NeurosurgeryHeidelberg University HospitalHeidelbergGermany
- TUM‐Neuroimaging CenterTechnical University of Munich, School of MedicineMunichGermany
| |
Collapse
|
3
|
Agboada D, Osnabruegge M, Rethwilm R, Kanig C, Schwitzgebel F, Mack W, Schecklmann M, Seiberl W, Schoisswohl S. Semi-automated motor hotspot search (SAMHS): a framework toward an optimised approach for motor hotspot identification. Front Hum Neurosci 2023; 17:1228859. [PMID: 38164193 PMCID: PMC10757939 DOI: 10.3389/fnhum.2023.1228859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Background Motor hotspot identification represents the first step in the determination of the motor threshold and is the basis for the specification of stimulation intensity used for various Transcranial Magnetic Stimulation (TMS) applications. The level of experimenters' experience and the methodology of motor hotspot identification differ between laboratories. The need for an optimized and time-efficient technique for motor hotspot identification is therefore substantial. Objective With the current work, we present a framework for an optimized and time-efficient semi-automated motor hotspot search (SAMHS) technique utilizing a neuronavigated robot-assisted TMS system (TMS-cobot). Furthermore, we aim to test its practicality and accuracy by a comparison with a manual motor hotspot identification method. Method A total of 32 participants took part in this dual-center study. At both study centers, participants underwent manual hotspot search (MHS) with an experienced TMS researcher, and the novel SAMHS procedure with a TMS-cobot (hereafter, called cobot hotspot search, CHS) in a randomized order. Resting motor threshold (RMT), and stimulus intensity to produce 1 mV (SI1mV) peak-to-peak of motor-evoked potential (MEP), as well as MEPs with 120% RMT and SI1mV were recorded as outcome measures for comparison. Results Compared to the MHS method, the CHS produced lower RMT, lower SI1mV and a trend-wise higher peak-to-peak MEP amplitude in stimulations with SI1mV. The duration of the CHS procedure was longer than that of the MHS (15.60 vs. 2.43 min on average). However, accuracy of the hotspot was higher for the CHS compared to the MHS. Conclusions The SAMHS procedure introduces an optimized motor hotspot determination system that is easy to use, and strikes a fairly good balance between accuracy and speed. This new procedure can thus be deplored by experienced as well as beginner-level TMS researchers.
Collapse
Affiliation(s)
- Desmond Agboada
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Mirja Osnabruegge
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Roman Rethwilm
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Carolina Kanig
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Florian Schwitzgebel
- Department of Electrical Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Wolfgang Mack
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Wolfgang Seiberl
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Stefan Schoisswohl
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Iannotti GR, Nadin I, Ivanova V, Tourdot Q, Lascano AM, Momjian S, Schaller KL, Lovblad KO, Grouiller F. Specificity of Quantitative Functional Brain Mapping with Arterial Spin-Labeling for Preoperative Assessment. AJNR Am J Neuroradiol 2023; 44:1302-1308. [PMID: 37857448 PMCID: PMC10631521 DOI: 10.3174/ajnr.a8006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND AND PURPOSE Arterial spin-labeling is a noninvasive MR imaging technique allowing direct and quantitative measurement of brain perfusion. Arterial spin-labeling is well-established in clinics for investigating the overall cerebral perfusion, but it is still occasionally employed during tasks. The typical contrast for functional MR imaging is blood oxygen level-dependent (BOLD) imaging, whose specificity could be biased in neurologic patients due to altered neurovascular coupling. This work aimed to validate the use of functional ASL as a noninvasive tool for presurgical functional brain mapping. This is achieved by comparing the spatial accuracy of functional ASL with transcranial magnetic stimulation as the criterion standard. MATERIALS AND METHODS Twenty-eight healthy participants executed a motor task and received a somatosensory stimulation, while BOLD imaging and arterial spin-labeling were acquired simultaneously. Transcranial magnetic stimulation was subsequently used to define hand somatotopy. RESULTS Functional ASL was found more adjacent to transcranial magnetic stimulation than BOLD imaging, with a significant shift along the inferior-to-superior direction. With respect to BOLD imaging, functional ASL was localized significantly more laterally, anteriorly, and inferiorly during motor tasks and pneumatic stimulation. CONCLUSIONS Our results confirm the specificity of functional ASL in targeting the regional neuronal excitability. Functional ASL could be considered as a valid supplementary technique to BOLD imaging for presurgical mapping when spatial accuracy is crucial for delineating eloquent cortex.
Collapse
Affiliation(s)
- Giannina R Iannotti
- From the Division of Neuroradiology, Diagnostic Department (G.R.I., K.O.L.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Isaure Nadin
- Department of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vladimira Ivanova
- Department of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Quentin Tourdot
- Faculty of Pharmacy (Q.T.), University of Montpellier, Montpellier, France
| | - Agustina M Lascano
- Division of Neurology (A.M.L.), Department of Clinical Neuroscience, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Shahan Momjian
- Department of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Karl L Schaller
- Department of Neurosurgery (G.R.I., I.N., V.I., S.M., K.L.S.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Karl O Lovblad
- From the Division of Neuroradiology, Diagnostic Department (G.R.I., K.O.L.), Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Frederic Grouiller
- Swiss Centre for Affective Sciences (F.G.), University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (F.G.), MRI University of Geneva Cognitive and Affective Neuroimaging Section, Geneva, Switzerland
- Laboratory of Neurology and Imaging of Cognition (F.G.), Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. J Neurosci Methods 2022; 377:109631. [PMID: 35623474 DOI: 10.1016/j.jneumeth.2022.109631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Biomarkers are essential for understanding the underlying pathologies in brain disorders and for developing effective treatments. Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging neurophysiological tool that can be used for biomarker development. This method can identify biomarkers associated with the function and dynamics of the inhibitory and excitatory neurotransmitter systems and effective connectivity between brain areas. In this review, we outline the current state of the TMS-EEG biomarker field by summarizing the existing protocols and the possibilities and challenges associated with this methodology.
Collapse
|
6
|
Umana GE, Scalia G, Graziano F, Maugeri R, Alberio N, Barone F, Crea A, Fagone S, Giammalva GR, Brunasso L, Costanzo R, Paolini F, Gerardi RM, Tumbiolo S, Cicero S, Federico Nicoletti G, Iacopino DG. Navigated Transcranial Magnetic Stimulation Motor Mapping Usefulness in the Surgical Management of Patients Affected by Brain Tumors in Eloquent Areas: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:644198. [PMID: 33746895 PMCID: PMC7970041 DOI: 10.3389/fneur.2021.644198] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/08/2021] [Indexed: 01/17/2023] Open
Abstract
Background: The surgical strategy for brain glioma has changed, shifting from tumor debulking to a more careful tumor dissection with the aim of a gross-total resection, extended beyond the contrast-enhancement MRI, including the hyperintensity on FLAIR MR images and defined as supratotal resection. It is possible to pursue this goal thanks to the refinement of several technological tools for pre and intraoperative planning including intraoperative neurophysiological monitoring (IONM), cortico-subcortical mapping, functional MRI (fMRI), navigated transcranial magnetic stimulation (nTMS), intraoperative CT or MRI (iCT, iMR), and intraoperative contrast-enhanced ultrasound. This systematic review provides an overview of the state of the art techniques in the application of nTMS and nTMS-based DTI-FT during brain tumor surgery. Materials and Methods: A systematic literature review was performed according to the PRISMA statement. The authors searched the PubMed and Scopus databases until July 2020 for published articles with the following Mesh terms: (Brain surgery OR surgery OR craniotomy) AND (brain mapping OR functional planning) AND (TMS OR transcranial magnetic stimulation OR rTMS OR repetitive transcranial stimulation). We only included studies regarding motor mapping in craniotomy for brain tumors, which reported data about CTS sparing. Results: A total of 335 published studies were identified through the PubMed and Scopus databases. After a detailed examination of these studies, 325 were excluded from our review because of a lack of data object in this search. TMS reported an accuracy range of 0.4–14.8 mm between the APB hotspot (n1/4 8) in nTMS and DES from the DES spot; nTMS influenced the surgical indications in 34.3–68.5%. Conclusion: We found that nTMS can be defined as a safe and non-invasive technique and in association with DES, fMRI, and IONM, improves brain mapping and the extent of resection favoring a better postoperative outcome.
Collapse
Affiliation(s)
- Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy.,Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Nicola Alberio
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Fabio Barone
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Antonio Crea
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy.,Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Saverio Fagone
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Giuseppe Roberto Giammalva
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Lara Brunasso
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Roberta Costanzo
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Federica Paolini
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | - Rosa Maria Gerardi
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| | | | - Salvatore Cicero
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Giovanni Federico Nicoletti
- Department of Neurosurgery, Highly Specialized Hospital and of National Importance "Garibaldi", Catania, Italy
| | - Domenico Gerardo Iacopino
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP "Paolo Giaccone," Palermo, Italy
| |
Collapse
|
7
|
Complications in AVM Surgery. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 132:77-81. [PMID: 33973032 DOI: 10.1007/978-3-030-63453-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In AVM surgery perioperative complications can arise and can have serious perioperative consequences. Surgically related complications in AVM treatment, in many cases, can be avoided by paying attention to details:1. Careful selection of the patient: - addressing a patient with eloquent AVM to Gamma Knife treatment - preoperative treatment with selective embolization of the accessible deep feeders - preoperative gamma knife or embolize those patient with an over-expressed venous pattern2. Meticulous coagulation of deep medullary feeders: - Using dirty coagulation - Using dry non-stick coagulation - Using micro clips - Using laser - Reaching the choroidal vessel in the ventricle when possible - Avoiding occlusive coagulation with hemostatic agents3. Check and avoiding any residual of the AVM4. Keep the patient under pressure control during postoperative periodFulfilling these steps contributes to reduce complications in this difficult surgery, leading to a safer treatment that compares favorably with natural history of brain arteriovenous malformations.
Collapse
|
8
|
Pitkänen M, Yazawa S, Airaksinen K, Lioumis P, Nurminen J, Pekkonen E, Mäkelä JP. Localization of Sensorimotor Cortex Using Navigated Transcranial Magnetic Stimulation and Magnetoencephalography. Brain Topogr 2019; 32:873-881. [PMID: 31093863 PMCID: PMC6707977 DOI: 10.1007/s10548-019-00716-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
The mapping of the sensorimotor cortex gives information about the cortical motor and sensory functions. Typical mapping methods are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG). The differences between these mapping methods are, however, not fully known. TMS center of gravities (CoGs), MEG somatosensory evoked fields (SEFs), corticomuscular coherence (CMC), and corticokinematic coherence (CKC) were mapped in ten healthy adults. TMS mapping was performed for first dorsal interosseous (FDI) and extensor carpi radialis (ECR) muscles. SEFs were induced by tactile stimulation of the index finger. CMC and CKC were determined as the coherence between MEG signals and the electromyography or accelerometer signals, respectively, during voluntary muscle activity. CMC was mapped during the activation of FDI and ECR muscles separately, whereas CKC was measured during the waving of the index finger at a rate of 3–4 Hz. The maximum CMC was found at beta frequency range, whereas maximum CKC was found at the movement frequency. The mean Euclidean distances between different localizations were within 20 mm. The smallest distance was found between TMS FDI and TMS ECR CoGs and longest between CMC FDI and CMC ECR sites. TMS-inferred localizations (CoGs) were less variable across participants than MEG-inferred localizations (CMC, CKC). On average, SEF locations were 8 mm lateral to the TMS CoGs (p < 0.01). No differences between hemispheres were found. Based on the results, TMS appears to be more viable than MEG in locating motor cortical areas.
Collapse
Affiliation(s)
- Minna Pitkänen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland. .,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland. .,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland.
| | - Shogo Yazawa
- Department of Systems Neuroscience, Sapporo Medical University, Sapporo, Japan
| | - Katja Airaksinen
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Nurminen
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Jung J, Lavrador JP, Patel S, Giamouriadis A, Lam J, Bhangoo R, Ashkan K, Vergani F. First United Kingdom Experience of Navigated Transcranial Magnetic Stimulation in Preoperative Mapping of Brain Tumors. World Neurosurg 2019; 122:e1578-e1587. [DOI: 10.1016/j.wneu.2018.11.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|