1
|
Dimet-Wiley AL, Latham CM, Brightwell CR, Neelakantan H, Keeble AR, Thomas NT, Noehren H, Fry CS, Watowich SJ. Nicotinamide N-methyltransferase inhibition mimics and boosts exercise-mediated improvements in muscle function in aged mice. Sci Rep 2024; 14:15554. [PMID: 38969654 PMCID: PMC11226645 DOI: 10.1038/s41598-024-66034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Human hallmarks of sarcopenia include muscle weakness and a blunted response to exercise. Nicotinamide N-methyltransferase inhibitors (NNMTis) increase strength and promote the regenerative capacity of aged muscle, thus offering a promising treatment for sarcopenia. Since human hallmarks of sarcopenia are recapitulated in aged (24-month-old) mice, we treated mice from 22 to 24 months of age with NNMTi, intensive exercise, or a combination of both, and compared skeletal muscle adaptations, including grip strength, longitudinal running capacity, plantarflexor peak torque, fatigue, and muscle mass, fiber type, cross-sectional area, and intramyocellular lipid (IMCL) content. Exhaustive proteome and metabolome analyses were completed to identify the molecular mechanisms underlying the measured changes in skeletal muscle pathophysiology. Remarkably, NNMTi-treated aged sedentary mice showed ~ 40% greater grip strength than sedentary controls, while aged exercised mice only showed a 20% increase relative to controls. Importantly, the grip strength improvements resulting from NNMTi treatment and exercise were additive, with NNMTi-treated exercised mice developing a 60% increase in grip strength relative to sedentary controls. NNMTi treatment also promoted quantifiable improvements in IMCL content and, in combination with exercise, significantly increased gastrocnemius fiber CSA. Detailed skeletal muscle proteome and metabolome analyses revealed unique molecular mechanisms associated with NNMTi treatment and distinct molecular mechanisms and cellular processes arising from a combination of NNMTi and exercise relative to those given a single intervention. These studies suggest that NNMTi-based drugs, either alone or combined with exercise, will be beneficial in treating sarcopenia and a wide range of age-related myopathies.
Collapse
Affiliation(s)
| | - Christine M Latham
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Alexander R Keeble
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Haley Noehren
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Scariot PP, Gobatto CA, Polisel EE, Gomes AE, Beck WR, Manchado-Gobatto FB. Early-life mice housed in standard stocking density reduce the spontaneous physical activity and increase visceral fat deposition before reaching adulthood. Lab Anim 2022; 56:344-355. [PMID: 35062839 DOI: 10.1177/00236772211065915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Laboratory rodents spend the entire day housed in standard cages that provide a restricted area for movements and might, therefore, limit physical activity. However, it has not been tested in immature rodents of ages ranging from weaning to adulthood (adolescence period) whether the restricted area per animal does actually reduce physical activity and impact the body composition. We analyzed the spontaneous physical activity and feeding behavior during the adolescence of mice kept in two different housing conditions (standard stocking density (SSD) versus low stocking density (LSD)). We aimed to compare the body composition between SSD and LSD groups before they reached adulthood. Differential housing began at four weeks of age and was maintained for four weeks until euthanasia at eight weeks of age. The SSD group had a floor space of 88 cm2 available per animal, while LSD mice were housed with a floor space of 320 cm2 per animal, increasing the individual radius for movement more than three-fold compared with standard requirements. Mice kept in SSD exhibit lower spontaneous physical activity than mice kept in LSD. Early-life exposure to reduced physical activity in mice housed in SSD resulted in greater visceral fat accumulation before adulthood. An environment enabling/stimulating physical activity should be established for rodents as early as possible. This study will be helpful in showing that mice kept in SSD are early exposed to a reduced physical activity already in the adolescence period. Our findings could raise reflections about the translatability of rodents kept in SSD to healthy active humans.
Collapse
Affiliation(s)
- Pedro Pm Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Claudio A Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Emanuel Ec Polisel
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Ana Ec Gomes
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Wladimir R Beck
- Laboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, Brazil
| | - Fúlvia B Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
3
|
Ju YI, Sone T. Effects of Different Types of Mechanical Loading on Trabecular Bone Microarchitecture in Rats. J Bone Metab 2021; 28:253-265. [PMID: 34905673 PMCID: PMC8671029 DOI: 10.11005/jbm.2021.28.4.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanical loading is generally considered to have a positive impact on the skeleton; however, not all types of mechanical loading have the same beneficial effect. Many researchers have investigated which types of mechanical loading are more effective for improving bone mass and strength. Among the various mechanical loads, high-impact loading, such as jumping, appears to be more beneficial for bones than low-impact loadings such as walking, running, or swimming. Therefore, the different forms of mechanical loading exerted by running, swimming, and jumping exercises may have different effects on bone adaptations. However, little is known about the relationships between the types of mechanical loading and their effects on trabecular bone structure. The purpose of this article is to review the recent reports on the effects of treadmill running, jumping, and swimming on the trabecular bone microarchitecture in small animals. The effects of loading on trabecular bone architecture appear to differ among these different exercises, as several reports have shown that jumping increases the trabecular bone mass by thickening the trabeculae, whereas treadmill running and swimming add to the trabecular bone mass by increasing the trabecular number, rather than the thickness. This suggests that different types of exercise promote gains in trabecular bone mass through different architectural patterns in small animals.
Collapse
Affiliation(s)
- Yong-In Ju
- Department of Health and Sports Sciences, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Teruki Sone
- Department of Nuclear Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
4
|
Gordon BR, McDowell CP, Lyons M, Herring MP. Resistance exercise training for anxiety and worry symptoms among young adults: a randomized controlled trial. Sci Rep 2020; 10:17548. [PMID: 33067493 PMCID: PMC7567848 DOI: 10.1038/s41598-020-74608-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
This trial quantified the effects of ecologically-valid resistance exercise training (RET) on anxiety and worry symptoms among young adults. Young adults not meeting criteria for subclinical, or analogue Generalized Anxiety Disorder (AGAD) were randomized to an eight-week RET intervention, or eight-week wait-list. AGAD status was determined using validated cut-scores for both the Psychiatric Diagnostic Screening Questionnaire-Generalized Anxiety Disorder subscale (≥ 6) and Penn State Worry Questionnaire (≥ 45). The primary outcome was anxiety symptoms measured with the Trait Anxiety subscale of the State-Trait Anxiety Inventory. The RET was designed according to World Health Organization and American College of Sports Medicine guidelines. RM-ANCOVA examined differences between RET and wait-list over time. Significant interactions were decomposed with simple effects analysis. Hedges' d effect sizes quantified magnitude of differences in change between RET and wait-list. Twenty-eight participants (64% female) fully engaged in the trial (mean age: 26.0 ± 6.2y, RET: n = 14; Wait-list: n = 14). A significant group X time interaction was found for anxiety symptoms (F(3,66) = 3.60, p ≤ 0.019; d = 0.85, 95%CI: 0.06 to 1.63). RET significantly reduced anxiety symptoms from baseline to post-intervention (mean difference = - 7.89, p ≤ 0.001). No significant interaction was found for worry (F(3,69) = 0.79, p ≥ 0.50; d = - 0.22, 95%CI: - 0.96 to 0.53). Ecologically-valid RET significantly improves anxiety symptoms among young adults.Trial Registration: Clinicaltrials.gov Identifier: NCT04116944, 07/10/2019.
Collapse
Affiliation(s)
- Brett R Gordon
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland. .,Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland.
| | - Cillian P McDowell
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.,Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland.,The Irish Longitudinal Study On Ageing, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mark Lyons
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| | - Matthew P Herring
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.,Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
5
|
Reddy A, Bozi LHM, Yaghi OK, Mills EL, Xiao H, Nicholson HE, Paschini M, Paulo JA, Garrity R, Laznik-Bogoslavski D, Ferreira JCB, Carl CS, Sjøberg KA, Wojtaszewski JFP, Jeppesen JF, Kiens B, Gygi SP, Richter EA, Mathis D, Chouchani ET. pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell 2020; 183:62-75.e17. [PMID: 32946811 DOI: 10.1016/j.cell.2020.08.039] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/05/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Abstract
In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.
Collapse
Affiliation(s)
- Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Omar K Yaghi
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hilary E Nicholson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Margherita Paschini
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Christian S Carl
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Murach KA, McCarthy JJ, Peterson CA, Dungan CM. Making Mice Mighty: recent advances in translational models of load-induced muscle hypertrophy. J Appl Physiol (1985) 2020; 129:516-521. [PMID: 32673155 DOI: 10.1152/japplphysiol.00319.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to genetically manipulate mice allows for gain- and loss-of-function in vivo, making them an ideal model for elucidating mechanisms of skeletal muscle mass regulation. Combining genetic models with mechanical muscle loading enables identification of specific factors involved in the hypertrophic response as well as the ability to test the requirement of those factors for adaptation, thereby informing performance and therapeutic interventions. Until recently, approaches for inducing mechanically mediated muscle hypertrophy (i.e., resistance-training analogs) have been limited and considered "nontranslatable" to humans. This mini-review outlines recent translational advances in loading-mediated strategies for inducing muscle hypertrophy in mice, and highlights the advantages and disadvantages of each method. The skeletal muscle field is poised for new breakthroughs in understanding mechanisms regulating load-induced muscle growth given the numerous murine tools that have very recently been described.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
7
|
Riedel G, Grant R, Sullivan M, Spink A. Preface: Special issue on Measuring Behaviour 2018. J Neurosci Methods 2020; 337:108681. [PMID: 32145226 DOI: 10.1016/j.jneumeth.2020.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Kim YJ, Kim HJ, Lee WJ, Seong JK. A comparison of the metabolic effects of treadmill and wheel running exercise in mouse model. Lab Anim Res 2020; 36:3. [PMID: 32206610 PMCID: PMC7081706 DOI: 10.1186/s42826-019-0035-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 02/02/2023] Open
Abstract
Aerobic exercise is well known to have a positive impact on body composition, muscle strength, and oxidative capacity. In animal model, both treadmill and wheel running exercise modalities have become more popular, in order to study physiological adaptation associated with aerobic exercise. However, few studies have compared physiological adaptations in response to either treadmill exercise (TE), or voluntary wheel running exercise (WE). We therefore compared each exercise intervention on body composition and oxidative markers in male C57BL/6 N mice. The total distance run was remarkably higher in the WE group than in the TE group. Both forms of exercise resulted in the reduction of body weight, fat mass, and adipocyte size. However, the average for grip strength of WE was higher than for control and TE. Interestingly, PGC-1α expression was increased in the gastrocnemius (glycolytic-oxidative) and soleus (oxidative) muscle of TE group, whereas WE showed a significant effect on PGC-1α expression only in the soleus muscle. However, muscle fiber type composition was not shifted remarkably in either type of exercise. These results suggest that TE and WE may exert beneficial effects in suppressing metabolic risks in mouse model through attenuating body weight, fat mass, size, and increase in mitochondria biogenesis marker, PGC-1α.
Collapse
Affiliation(s)
- Youn Ju Kim
- 1Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea.,3Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Hye Jin Kim
- 2The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea.,3Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea
| | - Won Jun Lee
- 4Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Je Kyung Seong
- 1Laboratory of Developmental Biology and Genomics, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea.,3Korea Mouse Phenotyping Center (KMPC), Seoul National University, 08826 Seoul, Republic of Korea.,5Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
9
|
Bushana PN, Koberstein JN, Nguyen T, Harvey DO, Davis CJ. Performance on the mouse vibration actuating search task is compromised by sleep deprivation. J Neurophysiol 2019; 123:600-607. [PMID: 31891527 DOI: 10.1152/jn.00826.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As we go about our daily routines we are continuously bombarded with environmental feedback that requires appraisal and response. Sleep loss can compromise the efficiency by which these cognitive processes function. Operationally, poor performance caused by insufficient sleep translates to increased health and safety risks in settings where attention and timely and/or accurate decisions to respond are critical (e.g., at work, on the road, etc.). Current rodent tasks that assess altered cognition after sleep deprivation (SD) do not accurately model the continuous multisensory feedback that informs goal-oriented behavior in humans. Herein, we describe the vibration actuating search task (VAST), which consists of a vibrating open field with pseudo-randomly selected entrance and target destination points. To successfully complete a trial, mice use feedback from rotary motor-induced floor vibrations to navigate from the entrance point to the target destination. Sets of 20 trials were conducted on 3 consecutive days, and before testing on the third day control mice were undisturbed while other mice were sleep deprived for 10 h. On the first 2 days mice learned the task with high success rates. Alternatively, VAST performance was compromised following SD as measured by increased failures in task completion, time to target, time spent immobile, and decreased speed as compared with undisturbed mice. The VAST enables the analysis of continuous feedback via multiple sensory modalities in mice and is applicable to a variety of operational settings.NEW & NOTEWORTHY The vibration actuating search task (VAST) is a novel performance assay that uses continuous auditory and haptic feedback to motivate and direct search behaviors in mice. The VAST is rapidly acquired by mice and performance is disrupted by sleep deprivation. The VAST has practical application in occupational settings. The cognitive aspects of the sensorimotor integration in the VAST may prove useful for rodent models of neurodegenerative disease.
Collapse
Affiliation(s)
- Priyanka N Bushana
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington.,Program in Neuroscience, Washington State University, Pullman, Washington
| | - John N Koberstein
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - Theresa Nguyen
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - Daniel O Harvey
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington
| | - Christopher J Davis
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University-Spokane, Spokane, Washington.,Sleep and Performance Research Center, Washington State University-Spokane, Spokane, Washington.,Program in Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
10
|
Roemers P, Hulst Y, van Heijningen S, van Dijk G, van Heuvelen MJG, De Deyn PP, van der Zee EA. Inducing Physical Inactivity in Mice: Preventing Climbing and Reducing Cage Size Negatively Affect Physical Fitness and Body Composition. Front Behav Neurosci 2019; 13:221. [PMID: 31680890 PMCID: PMC6797814 DOI: 10.3389/fnbeh.2019.00221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023] Open
Abstract
Physical inactivity has emerged as an important and risk factor for cardiovascular and metabolic diseases, independent of levels of exercise engagement. Moreover, inactivity is associated with poor brain functioning. However, little data on the effects of physical inactivity on the brain is available and few methods are suitable to investigate this matter. We tested whether preventing lid climbing and reducing cage size could be used to model physical inactivity in mice. Sixty young adult C57Bl6 mice (10 weeks old) were divided over six groups with different housing conditions: in cages of three different sizes with lids that either allowed or prevented lid climbing. Housing under these conditions was maintained for a period of 19 weeks before the mice were killed for body composition analysis. Physical fitness tests performed around 5 and 10 weeks into the intervention revealed that motor coordination in the balance beam test was reduced by 30.65%, grip strength by 8.91% and muscle stamina in the inverted screen test by 70.37% in non-climbing mice as compared to climbing controls. Preventing climbing increased visceral fat mass by 17.31%, but did not reduce muscle mass. Neither preventing climbing nor reducing cage size affected anxiety assessed in the Open Field test and the Elevated Plus Maze. We did not find any negative effect of inactivity on spatial learning and memory in the novel object location test or working memory measured with the Y-maze Alternation test. The reduced physical fitness and increase in visceral fat mass show that our inactivity method models most effects of physical inactivity that are observed in experimental and observational studies in humans. Whereas established methods such as hindlimb unloading mimic many of the effects of bed rest, our novel method can be applied to study the effects of less extreme forms of physical inactivity (i.e., sedentary behavior) in various disease models including rodent models for brain diseases (i.e., stroke, Alzheimer’s disease).
Collapse
Affiliation(s)
- Peter Roemers
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Yasmin Hulst
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Steffen van Heijningen
- Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Gertjan van Dijk
- Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| | - Marieke J G van Heuvelen
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
D'Hulst G, Palmer AS, Masschelein E, Bar-Nur O, De Bock K. Voluntary Resistance Running as a Model to Induce mTOR Activation in Mouse Skeletal Muscle. Front Physiol 2019; 10:1271. [PMID: 31636571 PMCID: PMC6787551 DOI: 10.3389/fphys.2019.01271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Long-term voluntary resistance running has been shown to be a valid model to induce muscle growth in rodents. Moreover, the mammalian target of rapamycin complex 1 (mTORC1) is a key signaling complex regulating exercise/nutrient-induced alterations in muscle protein synthesis. How acute resistance running affects mTORC1 signaling in muscle and if resistance applied to the wheel can modulate mTORC1 activation has not yet been fully elucidated. Here, we show that both acute resistance running and acute free running activated mTORC1 signaling in the m. gastrocnemius, m. soleus, and m. plantaris, but not in m. tibialis anterior of mice when compared to sedentary controls. Furthermore, only the low threshold oxidative part in the m. gastrocnemius showed increased mTORC1 signaling upon running and acute heavy-load resistance running evoked higher downstream mTORC1 signaling in both m. soleus and m. plantaris than free running without resistance, pointing toward mechanical load as an important independent regulator of mTORC1. Collectively, in this study, we show that voluntary resistance running is an easy-to-use, time-efficient and low stress model to study acute alterations in mTORC1 signaling upon high-load muscular contractions in mice.
Collapse
Affiliation(s)
- Gommaar D'Hulst
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Andrew S Palmer
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ori Bar-Nur
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Preface: Special issue on measuring behaviour 2016. J Neurosci Methods 2019; 300:1-3. [PMID: 29606274 DOI: 10.1016/j.jneumeth.2018.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|