1
|
Nie XP, Xu XS, Feng Z, Wang W, Ma C, Yang YX, Li JN, Zhou QX, Xu FQ, Luo MH, Zhou JN, Gong H, Xu L. Depicting Primate-Like Granular Dorsolateral Prefrontal Cortex in the Chinese Tree Shrew. eNeuro 2024; 11:ENEURO.0307-24.2024. [PMID: 39455280 PMCID: PMC11514722 DOI: 10.1523/eneuro.0307-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
It remains unknown whether the Chinese tree shrew, regarded as the closest sister of primate, has evolved a dorsolateral prefrontal cortex (dlPFC) comparable with primates that is characterized by a fourth layer (L4) enriched with granular cells and reciprocal connections with the mediodorsal nucleus (MD). Here, we reported that following AAV-hSyn-EGFP expression in the MD neurons, the fluorescence micro-optical sectioning tomography revealed their projection trajectories and targeted brain areas, such as the hippocampus, the corpus striatum, and the dlPFC. Cre-dependent transsynaptic viral tracing identified the MD projection terminals that targeted the L4 of the dlPFC, in which the presence of granular cells was confirmed via cytoarchitectural studies by using the Nissl, Golgi, and vGlut2 stainings. Additionally, the L5/6 of the dlPFC projected back to the MD. These results suggest that the tree shrew has evolved a primate-like dlPFC which can serve as an alternative for studying cognition-related functions of the dlPFC.
Collapse
Affiliation(s)
- Xiu-Peng Nie
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Xiao-Shan Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Zhao Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Wei Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Chen Ma
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Yue-Xiong Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Jin-Nan Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Qi-Xin Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
| | - Fu-Qiang Xu
- Shen Zhen Institute of Advanced Technology, Chinese Academy of Sciences, Xi Li Shen Zhen University Town, Shenzhen 518055, China
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
| | - Min-Hua Luo
- State Key Laboratory of Virology and Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiang-Ning Zhou
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
- Institute of Brain Science, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Lin Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Science Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, Kunming 650223, China
- Chinese Academy of Sciences Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
| |
Collapse
|
2
|
TopoResNet: A Hybrid Deep Learning Architecture and Its Application to Skin Lesion Classification. MATHEMATICS 2021. [DOI: 10.3390/math9222924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The application of artificial intelligence (AI) to various medical subfields has been a popular topic of research in recent years. In particular, deep learning has been widely used and has proven effective in many cases. Topological data analysis (TDA)—a rising field at the intersection of mathematics, statistics, and computer science—offers new insights into data. In this work, we develop a novel deep learning architecture that we call TopoResNet that integrates topological information into the residual neural network architecture. To demonstrate TopoResNet, we apply it to a skin lesion classification problem. We find that TopoResNet improves the accuracy and the stability of the training process.
Collapse
|
3
|
Li J, Shao D, Jiang D, Huang Q, Guan Y, Lai B, Zhao J, Hua F, Xie F. Alteration of neuroinflammation detected by 18F-GE180 PET imaging in place-conditioned rats with morphine withdrawal. EJNMMI Res 2021; 11:103. [PMID: 34637020 PMCID: PMC8511235 DOI: 10.1186/s13550-021-00849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence indicates that neuroinflammation (NI) significantly contributes to drug addiction, but the conversion of NI after drug withdrawal is not clear. Here, we conducted 18F-flutriciclamide (GE180) positron emission tomography (PET) imaging to investigate the conversion of NI during drug withdrawal and conditioning-induced aversion by measuring the change in microglial activation with 18F-GE180. METHODS Twelve male adult Sprague-Dawley rats were subjected to morphine withdrawal by the administration of naloxone, and six of them were used to model conditioned place aversion (CPA). 18F-GE180 PET imaging was performed for 11 rats on the last day of the morphine treatment phase and for 10 rats on the response assessment phase of the behavior conditioning procedure. A 18F-GE180 template was established for spatial normalization of each individual image, and the differential 18F-GE180 uptakes between the drug withdrawal (DW) group and the drug addiction (DA) group, the CPA group and the DA group, and the CPA group and the DW group were compared by a voxel-wise two-sample t test using SPM8. RESULTS Both the DW group and the CPA group spent less time in the conditioning cage during the post-test phase compared with the pretest phase, but only the difference in the CPA group was significant (63.2 ± 34.6 vs. - 159.53 ± 22.02, P < 0.005). Compared with the DA group, the uptake of 18F-GE180 increased mainly in the hippocampus, visual cortex, thalamus and midbrain regions and decreased mainly in the sensory-related cortices after the administration of naloxone in both the DW and CPA groups. Increased 18F-GE180 uptake was only observed in the mesolimbic regions after conditioned aversion compared with the DW group. CONCLUSION In morphine-dependent rats, Neuroinflammation (NI) became more severe in the addiction-involved brain regions but remitted in the sensory-related brain regions after the administration of naloxone, and this NI induced by withdrawal was further aggravated after conditioned aversion formation thus may help to consolidate the withdrawal memory.
Collapse
Affiliation(s)
- Junpeng Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Da Shao
- Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.,Research Center of Translation Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bin Lai
- Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jun Zhao
- Department of Nuclear Medicine, Dongfang Hospital, Tongji University, Shanghai, 200120, China.
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
4
|
Ai JQ, Luo R, Tu T, Yang C, Jiang J, Zhang B, Bi R, Tu E, Yao YG, Yan XX. Doublecortin-Expressing Neurons in Chinese Tree Shrew Forebrain Exhibit Mixed Rodent and Primate-Like Topographic Characteristics. Front Neuroanat 2021; 15:727883. [PMID: 34602987 PMCID: PMC8481370 DOI: 10.3389/fnana.2021.727883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Doublecortin (DCX) is transiently expressed in new-born neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) related to adult neurogenesis in the olfactory bulb (OB) and hippocampal formation. DCX immunoreactive (DCX+) immature neurons also occur in the cerebral cortex primarily over layer II and the amygdala around the paralaminar nucleus (PLN) in various mammals, with interspecies differences pointing to phylogenic variation. The tree shrews (Tupaia belangeri) are phylogenetically closer to primates than to rodents. Little is known about DCX+ neurons in the brain of this species. In the present study, we characterized DCX immunoreactivity (IR) in the forebrain of Chinese tree shrews aged from 2 months- to 6 years-old (n = 18). DCX+ cells were present in the OB, SVZ, SGZ, the piriform cortex over layer II, and the amygdala around the PLN. The numerical densities of DCX+ neurons were reduced in all above neuroanatomical regions with age, particularly dramatic in the DG in the 5–6 years-old animals. Thus, DCX+ neurons are present in the two established neurogenic sites (SVZ and SGZ) in the Chinese tree shrew as seen in other mammals. DCX+ cortical neurons in this animal exhibit a topographic pattern comparable to that in mice and rats, while these immature neurons are also present in the amygdala, concentrating around the PLN as seen in primates and some nonprimate mammals.
Collapse
Affiliation(s)
- Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Bo Zhang
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,CSA Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
5
|
Wang J, Li Q, Huang Q, Lv M, Li P, Dai J, Zhou M, Xu J, Zhang F, Gao J. Washed Microbiota Transplantation Accelerates the Recovery of Abnormal Changes by Light-Induced Stress in Tree Shrews. Front Cell Infect Microbiol 2021; 11:685019. [PMID: 34249778 PMCID: PMC8262326 DOI: 10.3389/fcimb.2021.685019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The gut and brain interact constantly in a complex fashion. Its intricacy and intrigue is progressively being revealed in the study of the "gut-brain axis". Among many factors, abnormal light exposure is a potential powerful stressor, which is becoming ever more pervasive in our modern society. However, little is known about how stress, induced by staying up late by light, affects the gut-brain axis. We addressed this question by extending the normal circadian light for four hours at night in fifteen male tree shrews to simulate the pattern of staying up late in humans. The behavior, biochemical tests, microbiota dynamics, and brain structure of tree shrews were evaluated. The simple prolongation of light in the environment resulted in substantial changes of body weight loss, behavioral differences, total sleep time reduction, and an increased level of urine cortisol. These alterations were rescued by the treatment of either ketamine or washed microbiota transplantation (WMT). Importantly, the sustainability of WMT effect was better than that of ketamine. Magnetic Resonance Imaging analysis indicated that ketamine acted on the hippocampus and thalamus, and WMT mainly affected the piriform cortex and lateral geniculate nucleus. In conclusion, long-term light stimulation could change the behaviors, composition of gut microbiota and brain structure in tree shrews. Targeting microbiota thus certainly holds promise as a treatment for neuropsychiatric disorders, including but not limited to stress-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Qianqian Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Meng Lv
- Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Pan Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Jing Dai
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Minjie Zhou
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jialu Xu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Jun Gao
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Department of Rehabilitation Medicine, Jiangsu Shengze Hospital Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Nie B, Wang L, Hu Y, Liang S, Tan Z, Chai P, Tang Y, Shang J, Pan Z, Zhao X, Zhang X, Gong J, Zheng C, Xu H, Wey HY, Liang SH, Shan B. A population stereotaxic positron emission tomography brain template for the macaque and its application to ischemic model. Neuroimage 2019; 203:116163. [PMID: 31494249 DOI: 10.1016/j.neuroimage.2019.116163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/03/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Positron emission tomography (PET) is a non-invasive imaging tool for the evaluation of brain function and neuronal activity in normal and diseased conditions with high sensitivity. The macaque monkey serves as a valuable model system in the field of translational medicine, for its phylogenetic proximity to man. To translation of non-human primate neuro-PET studies, an effective and objective data analysis platform for neuro-PET studies is needed. MATERIALS AND METHODS A set of stereotaxic templates of macaque brain, namely the Institute of High Energy Physics & Jinan University Macaque Template (HJT), was constructed by iteratively registration and averaging, based on 30 healthy rhesus monkeys. A brain atlas image was created in HJT space by combining sub-anatomical regions and defining new 88 bilateral functional regions, in which a unique integer was assigned for each sub-anatomical region. RESULTS The HJT comprised a structural MRI T1 weighted image (T1WI) template image, a functional FDG-PET template image, intracranial tissue segmentations accompanied with a digital macaque brain atlas image. It is compatible with various commercially available software tools, such as SPM and PMOD. Data analysis was performed on a stroke model compared with a group of healthy controls to demonstrate the usage of HJT. CONCLUSION We have constructed a stereotaxic template set of macaque brain named HJT, which standardizes macaque neuroimaging data analysis, supports novel radiotracer development and facilitates translational neuro-disorders research.
Collapse
Affiliation(s)
- Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences & School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Yichao Hu
- College of Information Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Shengxiang Liang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences & School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Tan
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pei Chai
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences & School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjin Tang
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zhangsheng Pan
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Xudong Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chao Zheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China.
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences & School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
| |
Collapse
|
7
|
Luo Q, Li Y, Luo L, Diao W. Comparisons of the accuracy of radiation diagnostic modalities in brain tumor: A nonrandomized, nonexperimental, cross-sectional trial. Medicine (Baltimore) 2018; 97:e11256. [PMID: 30075495 PMCID: PMC6081153 DOI: 10.1097/md.0000000000011256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tumor morphology improved sensitivity, accuracy, and specificity of the diagnosis, but all diagnostic techniques have attenuation correction issues.To compare computed tomographic (CT), positron emission tomographic (PET), and magnetic resonance imaging (MRI) characteristics of patients with brain tumor in a Chinese setting.A nonrandomized, nonexperimental, cross-sectional trial.Jining No. 1 People's Hospital, China.In total, 127 patients who had clinically confirmed a brain tumor were included in the cross-sectional study. Patients were subjected to brain CT, MRI, and PET. The tumors resected after brain surgery were subjected to morphological diagnosis. Statistical analysis of data of surgically removed tumor and that of different methods of diagnosis was performed using Wilcoxon test following Tukey-Kramer test. Spearmen correlation was performed between diagnostic modalities and in vivo morphology. Results were considered significant at 99% of confidence level.The data of diameter and volume of tumor derived from CT (Spearman r = 0.9845 and 0.9706), and MRI (Spearman r = 0.955 and 0.2378) were failed to correlate with that of that of the surgically removed tumor. However, prediction of diameter and volume of the tumor by PET (Spearman r = 0.9922 and 0.9921) were correlated with that of the surgically removed tumor. CT and MRI were failed to quantified pituitary adenomas.The study was recommended PET for assessment of brain tumor.
Collapse
Affiliation(s)
| | | | - Lan Luo
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | | |
Collapse
|