1
|
Kiely M, Triebswetter C, Gong Z, Laporte JP, Faulkner ME, Akhonda MABS, Alsameen MH, Spencer RG, Bouhrara M. Evidence of An Association Between Cerebral Blood Flow and Microstructural Integrity in Normative Aging Using a Holistic MRI Approach. J Magn Reson Imaging 2023; 58:284-293. [PMID: 36326302 PMCID: PMC10154435 DOI: 10.1002/jmri.28508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cerebral tissue integrity decline and cerebral blood flow (CBF) alteration are major aspects of motor and cognitive dysfunctions and neurodegeneration. However, little is known about the association between blood flow and brain microstructural integrity, especially in normal aging. PURPOSE To assess the association between CBF and cerebral microstructural integrity. STUDY TYPE Cross sectional. POPULATION A total of 94 cognitively unimpaired adults (mean age 50.7 years, age range between 22 and 88 years, 56 Men). FIELD STRENGTH/SEQUENCE A 3 T; pseudo-continuous arterial spin labeling (pCASL), diffusion tensor imaging (DTI), Bayesian Monte Carlo analysis of multicomponent driven equilibrium steady-state observation of T1 and T2 (BMC-mcDESPOT). ASSESSMENT Lobar associations between CBF derived from pCASL, and longitudinal relaxation rate (R1 ), transverse relaxation rate (R2 ) and myelin water fraction (MWF) derived from BMC-mcDESPOT, or radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD) and fractional anisotropy (FA) derived from DTI were assessed. STATISTICAL TESTS Multiple linear regression models were used using the mean region of interest (ROI) values for MWF, R1 , R2 , FA, MD, RD, or AxD as the dependent variable and CBF, age, age2 , and sex as the independent variables. A two-sided P value of <0.05 defined statistical significance. RESULTS R1 , R2 , MWF, FA, MD, RD, and AxD parameters were associated with CBF in most of the cerebral regions evaluated. Specifically, higher CBF values were significantly associated with higher FA, MWF, R1 and R2 , or lower MD, RD and AxD values. DATA CONCLUSION These findings suggest that cerebral tissue microstructure may be impacted by global brain perfusion, adding further evidence to the intimate relationship between cerebral blood supply and cerebral tissue integrity. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - John P. Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Mary E. Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | - Maryam H. Alsameen
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Richard G. Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Troudi A, Tensaouti F, Baudou E, Péran P, Laprie A. Arterial Spin Labeling Perfusion in Pediatric Brain Tumors: A Review of Techniques, Quality Control, and Quantification. Cancers (Basel) 2022; 14:4734. [PMID: 36230655 PMCID: PMC9564035 DOI: 10.3390/cancers14194734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) technique for measuring cerebral blood flow (CBF). This noninvasive technique has added a new dimension to the study of several pediatric tumors before, during, and after treatment, be it surgery, radiotherapy, or chemotherapy. However, ASL has three drawbacks, namely, a low signal-to-noise-ratio, a minimum acquisition time of 3 min, and limited spatial summarize current resolution. This technique requires quality control before ASL-CBF maps can be extracted and before any clinical investigations can be conducted. In this review, we describe ASL perfusion principles and techniques, summarize the most recent advances in CBF quantification, report technical advances in ASL (resting-state fMRI ASL, BOLD fMRI coupled with ASL), set out guidelines for ASL quality control, and describe studies related to ASL-CBF perfusion and qualitative and semi-quantitative ASL weighted-map quantification, in healthy children and those with pediatric brain tumors.
Collapse
Affiliation(s)
- Abir Troudi
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
| | - Fatima Tensaouti
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute-Oncopole, 31300 Toulouse, France
| | - Eloise Baudou
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Pediatric Neurology Department, Children’s Hospital, Toulouse University Hospital, 31300 Toulouse, France
| | - Patrice Péran
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
| | - Anne Laprie
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute-Oncopole, 31300 Toulouse, France
| |
Collapse
|
3
|
He G, Lu T, Li H, Lu J, Zhu H. Patch tensor decomposition and non-local means filter-based hybrid ASL image denoising. J Neurosci Methods 2022; 370:109488. [DOI: 10.1016/j.jneumeth.2022.109488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
|
4
|
Benjamini D, Bouhrara M, Komlosh ME, Iacono D, Perl DP, Brody DL, Basser PJ. Multidimensional MRI for Characterization of Subtle Axonal Injury Accelerated Using an Adaptive Nonlocal Multispectral Filter. FRONTIERS IN PHYSICS 2021; 9:737374. [PMID: 37408700 PMCID: PMC10321473 DOI: 10.3389/fphy.2021.737374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Multidimensional MRI is an emerging approach that simultaneously encodes water relaxation (T1 and T2) and mobility (diffusion) and replaces voxel-averaged values with subvoxel distributions of those MR properties. While conventional (i.e., voxel-averaged) MRI methods cannot adequately quantify the microscopic heterogeneity of biological tissue, using subvoxel information allows to selectively map a specific T1-T2-diffusion spectral range that corresponds to a group of tissue elements. The major obstacle to the adoption of rich, multidimensional MRI protocols for diagnostic or monitoring purposes is the prolonged scan time. Our main goal in the present study is to evaluate the performance of a nonlocal estimation of multispectral magnitudes (NESMA) filter on reduced datasets to limit the total acquisition time required for reliable multidimensional MRI characterization of the brain. Here we focused and reprocessed results from a recent study that identified potential imaging biomarkers of axonal injury pathology from the joint analysis of multidimensional MRI, in particular voxelwise T1-T2 and diffusion-T2 spectra in human Corpus Callosum, and histopathological data. We tested the performance of NESMA and its effect on the accuracy of the injury biomarker maps, relative to the co-registered histological reference. Noise reduction improved the accuracy of the resulting injury biomarker maps, while permitting data reduction of 35.7 and 59.6% from the full dataset for T1-T2 and diffusion-T2 cases, respectively. As successful clinical proof-of-concept applications of multidimensional MRI are continuously being introduced, reliable and robust noise removal and consequent acquisition acceleration would advance the field towards clinically-feasible diagnostic multidimensional MRI protocols.
Collapse
Affiliation(s)
- Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute of Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michal E. Komlosh
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Diego Iacono
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
- Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, United States
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Neurodegeneration Disorders Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Daniel P. Perl
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, United States
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - David L. Brody
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Peter J. Basser
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
Association of central arterial stiffness with hippocampal blood flow and N-acetyl aspartate concentration in hypertensive adult Dahl salt sensitive rats. J Hypertens 2021; 39:2113-2121. [PMID: 34001812 PMCID: PMC8452328 DOI: 10.1097/hjh.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Central arterial stiffness (CAS) is associated with elevated arterial blood pressure (BP) and is likely associated with stiffening of cerebral artery walls, with attendant cerebral hypoperfusion, neuronal density loss and cognitive decline. Dahl salt-sensitive (Dahl-S) rats exhibit age-associated hypertension and memory loss, even on a normal salt intake. METHOD We sought to explore whether central arterial pulse wave velocity (PWV), a marker of CAS, is associated with hippocampal cerebral blood flow (CBF) and neuronal density in hypertensive Dahl-S rats. We measured systolic BP (by tail-cuff plethysmography), aortic PWV (by echocardiography) and CBF and N-acetyl aspartate (NAA) (by magnetic resonance imaging) in 6 month-old male Dahl-S rats (n = 12). RESULTS Greater PWV was significantly associated with lower CBF and lower NAA concentration in the hippocampus, supporting a role of CAS in cerebrovascular dysfunction and decline in cognitive performance with aging. CONCLUSION These findings implicate increased CAS in cerebral hypoperfusion and loss of neuronal density and function in the Dahl-S model of age-associated cardiovascular dysfunction.
Collapse
|
6
|
Alisch JSR, Khattar N, Kim RW, Cortina LE, Rejimon AC, Qian W, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging. Aging (Albany NY) 2021; 13:4911-4925. [PMID: 33596183 PMCID: PMC7950235 DOI: 10.18632/aging.202673] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Adequate cerebral blood flow (CBF) is essential to a healthy central nervous system (CNS). Previous work suggests that CBF differs between men and women, and declines with age and certain pathologies, but a highly controlled systematic study across a wide age range, and incorporating white matter (WM) regions, has not been undertaken. Here, we investigate age- and sex-related differences in CBF in gray matter (GM) and WM regions in a cohort (N = 80) of cognitively unimpaired individuals over a wide age range. In agreement with literature, we find that GM regions exhibited lower CBF with age. In contrast, WM regions exhibited higher CBF with age in various cerebral regions. We attribute this new finding to increased oligodendrocyte metabolism to maintain myelin homeostasis in the setting of increased myelin turnover with age. Further, consistent with prior studies, we found that CBF was higher in women than in men in all brain structures investigated. Our work provides new insights into the effects of age and sex on CBF. In addition, our results provide reference CBF values for the standard ASL protocol recommended by the ISMRM Perfusion Study Group and the European ASL in Dementia consortium. Thus, these results provide a foundation for further investigations of CNS perfusion in a variety of settings, including aging, cerebrovascular diseases, and dementias.
Collapse
Affiliation(s)
- Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard W Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Wenshu Qian
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luigi Ferrucci
- Laboratory Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| |
Collapse
|
7
|
Bouhrara M, Alisch JSR, Khattar N, Kim RW, Rejimon AC, Cortina LE, Qian W, Ferrucci L, Resnick SM, Spencer RG. Association of cerebral blood flow with myelin content in cognitively unimpaired adults. BMJ Neurol Open 2020; 2:e000053. [PMID: 33681786 PMCID: PMC7903181 DOI: 10.1136/bmjno-2020-000053] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 05/31/2020] [Indexed: 01/23/2023] Open
Abstract
Background Myelin loss and cerebral blood flow (CBF) decline are central features of several neurodegenerative diseases. Myelin maintenance through oligodendrocyte metabolism is an energy-demanding process, so that myelin homeostasis is particularly sensitive to hypoxia, hypoperfusion or ischaemia. However, in spite of its central importance, little is known about the association between blood supply and myelin integrity. Objective To assess associations between cortical and subcortical CBF, and subcortical myelin content, in critical brain white matter regions. Materials and methods MRI was performed on a cohort of 67 cognitively unimpaired adults. Using advanced MRI methodology, we measured whole-brain longitudinal and transverse relaxation rates (R1 and R2), sensitive but non-specific markers of myelin content, and myelin water fraction (MWF), a direct surrogate of myelin content, as well as regional CBF, from each of these participants. Results All quantitative relaxometry metrics were positively associated with CBF in all brain regions evaluated. These associations between MWF or R1 and CBF, and, to a lesser extent, between R2 and CBF, were statistically significant in most brain regions examined, indicating that lower regional cortical or subcortical CBF corresponds to a decrease in local subcortical myelin content. Finally, all relaxometry metrics exhibited a quadratic, inverted U-shaped, association with age; this is attributed to the development of myelination from young to middle age, followed by progressive loss of myelin in later years. Conclusions In this first study examining the association between local blood supply and myelin integrity, we found that myelin content declines with CBF across a wide age range of cognitively normal subjects.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Joseph S R Alisch
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Nikkita Khattar
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard W Kim
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Abinand C Rejimon
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luis E Cortina
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Wenshu Qian
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Susan M Resnick
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard G Spencer
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Bouhrara M, Maring MC, Spencer RG. A simple and fast adaptive nonlocal multispectral filtering algorithm for efficient noise reduction in magnetic resonance imaging. Magn Reson Imaging 2018; 55:133-139. [PMID: 30149058 DOI: 10.1016/j.mri.2018.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE We recently introduced a multispectral (MS) nonlocal (NL) filter based on maximum likelihood estimation (MLE) of voxel intensities, termed MS-NLML. While MS-NLML provides excellent noise reduction and improved image feature preservation as compared to other NL or MS filters, it requires considerable processing time, limiting its application in routine analyses. In this work, we introduced a fast, simple, and robust filter, termed nonlocal estimation of multispectral magnitudes (NESMA), for noise reduction in multispectral (MS) magnetic resonance imaging (MRI). METHODS Through extensive simulation and in-vivo analyses, we compared the performance of NESMA and MS-NLML in terms of noise reduction and processing efficiency. Further, we introduce two simple adaptive methods that permit spatial variation of similar voxels, R, used in the filtering. The first method is semi-adaptive and permits variation of R across the image by using a relative Euclidean distance (RED) similarity threshold. The second method is fully adaptive and filters the raw data with several RED similarity thresholds to spatially determine the optimal threshold value using an unbiased criterion. RESULTS NESMA shows very similar filtering performance as compared to MS-NLML, however, with much simple implementation and very fast processing time. Further, for both filters, the adaptive methods were shown to further reduce noise in comparison with the conventional non-adaptive method in which R is set to a constant value throughout the image. CONCLUSIONS NESMA is fast, robust, and straightforward to implement filter. These features render it suitable for routine clinical use and analysis of large MRI datasets.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- National Institute on Aging, National Institute of Health, Baltimore, MD, USA.
| | - Michael C Maring
- National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Richard G Spencer
- National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| |
Collapse
|