1
|
Shigapova RR, Mukhamedshina YO. Electrophysiology Methods for Assessing of Neurodegenerative and Post-Traumatic Processes as Applied to Translational Research. Life (Basel) 2024; 14:737. [PMID: 38929721 PMCID: PMC11205106 DOI: 10.3390/life14060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Electrophysiological studies have long established themselves as reliable methods for assessing the functional state of the brain and spinal cord, the degree of neurodegeneration, and evaluating the effectiveness of therapy. In addition, they can be used to diagnose, predict functional outcomes, and test the effectiveness of therapeutic and rehabilitation programs not only in clinical settings, but also at the preclinical level. Considering the urgent need to develop potential stimulators of neuroregeneration, it seems relevant to obtain objective data when modeling neurological diseases in animals. Thus, in the context of the application of electrophysiological methods, not only the comparison of the basic characteristics of bioelectrical activity of the brain and spinal cord in humans and animals, but also their changes against the background of neurodegenerative and post-traumatic processes are of particular importance. In light of the above, this review will contribute to a better understanding of the results of electrophysiological assessment in neurodegenerative and post-traumatic processes as well as the possibility of translating these methods from model animals to humans.
Collapse
Affiliation(s)
- Rezeda Ramilovna Shigapova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia;
| | - Yana Olegovna Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia;
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
2
|
Chudakova DA, Samoilova EM, Chekhonin VP, Baklaushev VP. Improving Efficiency of Direct Pro-Neural Reprogramming: Much-Needed Aid for Neuroregeneration in Spinal Cord Injury. Cells 2023; 12:2499. [PMID: 37887343 PMCID: PMC10605572 DOI: 10.3390/cells12202499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Spinal cord injury (SCI) is a medical condition affecting ~2.5-4 million people worldwide. The conventional therapy for SCI fails to restore the lost spinal cord functions; thus, novel therapies are needed. Recent breakthroughs in stem cell biology and cell reprogramming revolutionized the field. Of them, the use of neural progenitor cells (NPCs) directly reprogrammed from non-neuronal somatic cells without transitioning through a pluripotent state is a particularly attractive strategy. This allows to "scale up" NPCs in vitro and, via their transplantation to the lesion area, partially compensate for the limited regenerative plasticity of the adult spinal cord in humans. As recently demonstrated in non-human primates, implanted NPCs contribute to the functional improvement of the spinal cord after injury, and works in other animal models of SCI also confirm their therapeutic value. However, direct reprogramming still remains a challenge in many aspects; one of them is low efficiency, which prevents it from finding its place in clinics yet. In this review, we describe new insights that recent works brought to the field, such as novel targets (mitochondria, nucleoli, G-quadruplexes, and others), tools, and approaches (mechanotransduction and electrical stimulation) for direct pro-neural reprogramming, including potential ones yet to be tested.
Collapse
Affiliation(s)
- Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Ekaterina M. Samoilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| |
Collapse
|
3
|
de Kanter AFJ, Jongsma KR, Verhaar MC, Bredenoord AL. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:167-187. [PMID: 36112697 PMCID: PMC10122262 DOI: 10.1089/ten.teb.2022.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Tissue Engineering (TE) is a branch of Regenerative Medicine (RM) that combines stem cells and biomaterial scaffolds to create living tissue constructs to restore patients' organs after injury or disease. Over the last decade, emerging technologies such as 3D bioprinting, biofabrication, supramolecular materials, induced pluripotent stem cells, and organoids have entered the field. While this rapidly evolving field is expected to have great therapeutic potential, its development from bench to bedside presents several ethical and societal challenges. To make sure TE will reach its ultimate goal of improving patient welfare, these challenges should be mapped out and evaluated. Therefore, we performed a systematic review of the ethical implications of the development and application of TE for regenerative purposes, as mentioned in the academic literature. A search query in PubMed, Embase, Scopus, and PhilPapers yielded 2451 unique articles. After systematic screening, 237 relevant ethical and biomedical articles published between 2008 and 2021 were included in our review. We identified a broad range of ethical implications that could be categorized under 10 themes. Seven themes trace the development from bench to bedside: (1) animal experimentation, (2) handling human tissue, (3) informed consent, (4) therapeutic potential, (5) risk and safety, (6) clinical translation, and (7) societal impact. Three themes represent ethical safeguards relevant to all developmental phases: (8) scientific integrity, (9) regulation, and (10) patient and public involvement. This review reveals that since 2008 a significant body of literature has emerged on how to design clinical trials for TE in a responsible manner. However, several topics remain in need of more attention. These include the acceptability of alternative translational pathways outside clinical trials, soft impacts on society and questions of ownership over engineered tissues. Overall, this overview of the ethical and societal implications of the field will help promote responsible development of new interventions in TE and RM. It can also serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. Impact statement To our knowledge, this is the first time that the ethical implications of Tissue Engineering (TE) have been reviewed systematically. By gathering existing scholarly work and identifying knowledge gaps, this review facilitates further research into the ethical and societal implications of TE and Regenerative Medicine (RM) and other emerging biomedical technologies. Moreover, it will serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. As such, our review may promote successful and responsible development of new strategies in TE and RM.
Collapse
Affiliation(s)
- Anne-Floor J. de Kanter
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Quercetin Derivatives in Combating Spinal Cord Injury: A Mechanistic and Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121960. [PMID: 36556325 PMCID: PMC9783198 DOI: 10.3390/life12121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) possesses a complicated etiology. There is no FDA-approved treatment for SCI, and the majority of current interventions focus on reducing symptoms. During SCI, inflammation, oxidative stress, apoptosis, and autophagy are behind the secondary phase of SCI and cause serious consequences. It urges the need for providing multi-targeting agents, that possess lower side effects and higher efficacy. The plant secondary metabolites are multi-targeting agents and seem to provide new roads in combating diseases. Flavonoids are phytochemicals of continual interest to scientists in combating neurodegenerative diseases (NDDs). Flavonoids are being studied for their biological and pharmacological effects, particularly as antioxidants, anti-inflammatory agents, anti-apoptotic, and autophagy regulators. Quercetin is one of the most well-known flavonols known for its preventative and therapeutic properties. It is a naturally occurring bioactive flavonoid that has recently received a lot of attention for its beneficial effects on NDDs. Several preclinical evidence demonstrated its neuroprotective effects. In this systematic review, we aimed at providing the biological activities of quercetin and related derivatives against SCI. Detailed neuroprotective mechanisms of quercetin derivatives are also highlighted in combating SCI.
Collapse
|
5
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
6
|
Baklaushev VP, Durov OV, Kalsin VA, Gulaev EV, Kim SV, Gubskiy IL, Revkova VA, Samoilova EM, Melnikov PA, Karal-Ogly DD, Orlov SV, Troitskiy AV, Chekhonin VP, Averyanov AV, Ahlfors JE. Disease modifying treatment of spinal cord injury with directly reprogrammed neural precursor cells in non-human primates. World J Stem Cells 2021; 13:452-469. [PMID: 34136075 PMCID: PMC8176843 DOI: 10.4252/wjsc.v13.i5.452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/20/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of regenerative therapy for human spinal cord injury (SCI) is dramatically restricted by two main challenges: the need for a safe source of functionally active and reproducible neural stem cells and the need of adequate animal models for preclinical testing. Direct reprogramming of somatic cells into neuronal and glial precursors might be a promising solution to the first challenge. The use of non-human primates for preclinical studies exploring new treatment paradigms in SCI results in data with more translational relevance to human SCI.
AIM To investigate the safety and efficacy of intraspinal transplantation of directly reprogrammed neural precursor cells (drNPCs).
METHODS Seven non-human primates with verified complete thoracic SCI were divided into two groups: drNPC group (n = 4) was subjected to intraspinal transplantation of 5 million drNPCs rostral and caudal to the lesion site 2 wk post injury, and lesion control (n = 3) was injected identically with the equivalent volume of vehicle.
RESULTS Follow-up for 12 wk revealed that animals in the drNPC group demonstrated a significant recovery of the paralyzed hindlimb as well as recovery of somatosensory evoked potential and motor evoked potential of injured pathways. Magnetic resonance diffusion tensor imaging data confirmed the intraspinal transplantation of drNPCs did not adversely affect the morphology of the central nervous system or cerebrospinal fluid circulation. Subsequent immunohistochemical analysis showed that drNPCs maintained SOX2 expression characteristic of multipotency in the transplanted spinal cord for at least 12 wk, migrating to areas of axon growth cones.
CONCLUSION Our data demonstrated that drNPC transplantation was safe and contributed to improvement of spinal cord function after acute SCI, based on neurological status assessment and neurophysiological recovery within 12 wk after transplantation. The functional improvement described was not associated with neuronal differentiation of the allogeneic drNPCs. Instead, directed drNPCs migration to the areas of active growth cone formation may provide exosome and paracrine trophic support, thereby further supporting the regeneration processes.
Collapse
Affiliation(s)
- Vladimir P Baklaushev
- Biomedical Research, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, Moscow 115682, Moskva, Russia
| | - Oleg V Durov
- Department of Neurosurgery, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA, Moscow 115682, Moskva, Russia
| | - Vladimir A Kalsin
- Biomedical Research, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, Moscow 115682, Moskva, Russia
| | - Eugene V Gulaev
- Department of Neurosurgery, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA, Moscow 115682, Moskva, Russia
| | - Sergey V Kim
- Department of Anesthesiology, N.N.Blokhin Russian Cancer Research Centre, Moscow 115478, Moskva, Russia
| | - Ilya L Gubskiy
- Ilya L Gubskiy, Radiology and Clinical Physiology Scientific Research Center, Federal center of brain research and neurotechnologies of the Federal Medical Biological Agency, Moscow 117997, Russia
| | - Veronika A Revkova
- Biomedical Research, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, Moscow 115682, Moskva, Russia
| | - Ekaterina M Samoilova
- Biomedical Research, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, Moscow 115682, Moskva, Russia
| | - Pavel A Melnikov
- Department of Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119992, Moskva, Russia
| | - Dzhina D Karal-Ogly
- Department of Primatology, Russian Acad Med Sci, Research Institute of Medical Primatology, Sochi 119992, Sochi, Russia
| | - Sergey V Orlov
- Department of Primatology, Russian Acad Med Sci, Research Institute of Medical Primatology, Sochi 119992, Sochi, Russia
| | - Alexander V Troitskiy
- Department of Vascular Surgery, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, Moscow 115682, Moskva, Russia
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow 115682, Moskva, Russia
| | - Alexander V Averyanov
- Biomedical Research, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, Moscow 115682, Moskva, Russia
| | | |
Collapse
|