1
|
Androuin A, Thierry M, Boluda S, Baskaran A, Langui D, Duyckaerts C, Potier MC, El Hachimi KH, Delatour B, Marty S. Alterations of Neuronal Lysosomes in Alzheimer's Disease and in APPxPS1-KI Mice. J Alzheimers Dis 2022; 87:273-284. [PMID: 35275545 DOI: 10.3233/jad-215692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The cellular and molecular alterations associated with synapse and neuron loss in Alzheimer's disease (AD) remain unclear. In transgenic mouse models that express mutations responsible for familial AD, neuronal and synaptic losses occur in populations that accumulate fibrillar amyloid-β 42 (Aβ 42) intracellularly. OBJECTIVE We aimed to study the subcellular localization of these fibrillar accumulations and whether such intraneuronal assemblies could be observed in the human pathology. METHODS We used immunolabeling and various electron microscopy techniques on APP x presenilin1 - knock-in mice and on human cortical biopsies and postmortem samples. RESULTS We found an accumulation of Aβ fibrils in lipofuscin granule-like organelles in APP x presenilin1 - knock-in mice. Electron microscopy of human cortical biopsies also showed an accumulation of undigested material in enlarged lipofuscin granules in neurons from AD compared to age-matched non-AD patients. However, in those biopsies or in postmortem samples we could not detect intraneuronal accumulations of Aβ fibrils, neither in the lipofuscin granules nor in other intraneuronal compartments. CONCLUSION The intralysosomal accumulation of Aβ fibrils in specific neuronal populations in APPxPS1-KI mice likely results from a high concentration of Aβ 42 in the endosome-lysosome system due to the high expression of the transgene in these neurons.
Collapse
Affiliation(s)
- Alexandre Androuin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Present address: Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Manon Thierry
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Susana Boluda
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Laboratoire de Neuropathologie Raymond Escourolle, Pitié-Salpêtrière Hospital, APHP, Sorbonne Université, Paris, France
| | | | - Asha Baskaran
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Dominique Langui
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Charles Duyckaerts
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marie-Claude Potier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Khalid Hamid El Hachimi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.,Laboratoire de Neurogénétique, EPHE, PSL Research University, Paris, France
| | - Benoît Delatour
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Serge Marty
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
2
|
Yu Y, Gao Y, Winblad B, Tjernberg LO, Schedin-Weiss S. A Super-Resolved View of the Alzheimer's Disease-Related Amyloidogenic Pathway in Hippocampal Neurons. J Alzheimers Dis 2021; 83:833-852. [PMID: 34366358 PMCID: PMC8543249 DOI: 10.3233/jad-215008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Processing of the amyloid-β protein precursor (AβPP) is neurophysiologically important due to the resulting fragments that regulate synapse biology, as well as potentially harmful due to generation of the 42 amino acid long amyloid β-peptide (Aβ42), which is a key player in Alzheimer's disease. OBJECTIVE Our aim was to clarify the subcellular locations of the fragments involved in the amyloidogenic pathway in primary neurons with a focus on Aβ42 and its immediate substrate AβPP C-terminal fragment (APP-CTF). To overcome the difficulties of resolving these compartments due to their small size, we used super-resolution microscopy. METHODS Mouse primary hippocampal neurons were immunolabelled and imaged by stimulated emission depletion (STED) microscopy, including three-dimensional three-channel imaging, and quantitative image analyses. RESULTS The first (β-secretase) and second (γ-secretase) cleavages of AβPP were localized to functionally and distally distinct compartments. The β-secretase cleavage was observed in early endosomes in soma, where we were able to show that the liberated N- and C-terminal fragments were sorted into distinct vesicles budding from the early endosomes. Lack of colocalization of Aβ42 and APP-CTF in soma suggested that γ-secretase cleavage occurs in neurites. Indeed, APP-CTF was, in line with Aβ42 in our previous study, enriched in the presynapse but absent from the postsynapse. In contrast, full-length AβPP was not detected in either the pre- or the postsynaptic side of the synapse. Furthermore, we observed that endogenously produced and endocytosed Aβ42 were localized in different compartments. CONCLUSION These findings provide critical super-resolved insight into amyloidogenic AβPP processing in primary neurons.
Collapse
Affiliation(s)
- Yang Yu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Yang Gao
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|