1
|
Sloin HE, Spivak L, Levi A, Gattegno R, Someck S, Stark E. Local activation of CA1 pyramidal cells induces theta-phase precession. Science 2024; 383:551-558. [PMID: 38301006 DOI: 10.1126/science.adk2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Hippocampal theta-phase precession is involved in spatiotemporal coding and in generating multineural spike sequences, but how precession originates remains unresolved. To determine whether precession can be generated directly in hippocampal area CA1 and disambiguate multiple competing mechanisms, we used closed-loop optogenetics to impose artificial place fields in pyramidal cells of mice running on a linear track. More than one-third of the CA1 artificial fields exhibited synthetic precession that persisted for a full theta cycle. By contrast, artificial fields in the parietal cortex did not exhibit synthetic precession. These findings are incompatible with precession models based on inheritance, dual-input, spreading activation, inhibition-excitation summation, or somato-dendritic competition. Thus, a precession generator resides locally within CA1.
Collapse
Affiliation(s)
- Hadas E Sloin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidor Spivak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roni Gattegno
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Department of Neurobiology, Haifa University, Haifa 3103301, Israel
| |
Collapse
|
2
|
Spivak L, Someck S, Levi A, Sivroni S, Stark E. Wired together, change together: Spike timing modifies transmission in converging assemblies. SCIENCE ADVANCES 2024; 10:eadj4411. [PMID: 38232172 DOI: 10.1126/sciadv.adj4411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
The precise timing of neuronal spikes may lead to changes in synaptic connectivity and is thought to be crucial for learning and memory. However, the effect of spike timing on neuronal connectivity in the intact brain remains unknown. Using closed-loop optogenetic stimulation in CA1 of freely moving mice, we generated unique spike patterns between presynaptic pyramidal cells (PYRs) and postsynaptic parvalbumin (PV)-immunoreactive cells. The stimulation led to spike transmission changes that occurred together across all presynaptic PYRs connected to the same postsynaptic PV cell. The precise timing of all presynaptic and postsynaptic cell spikes affected transmission changes. These findings reveal an unexpected plasticity mechanism, in which the spike timing of an entire cell assembly has a more substantial impact on effective connectivity than that of individual cell pairs.
Collapse
Affiliation(s)
- Lidor Spivak
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shir Sivroni
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Mathematics, Afeka-Tel Aviv College of Engineering, Tel-Aviv 6910717, Israel
- Department of Mathematics, The Open University of Israel, Ra'anana 4353701, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, Haifa University, Haifa 3103301, Israel
| |
Collapse
|
3
|
Someck S, Levi A, Sloin HE, Spivak L, Gattegno R, Stark E. Positive and biphasic extracellular waveforms correspond to return currents and axonal spikes. Commun Biol 2023; 6:950. [PMID: 37723241 PMCID: PMC10507124 DOI: 10.1038/s42003-023-05328-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023] Open
Abstract
Multiple biophysical mechanisms may generate non-negative extracellular waveforms during action potentials, but the origin and prevalence of positive spikes and biphasic spikes in the intact brain are unknown. Using extracellular recordings from densely-connected cortical networks in freely-moving mice, we find that a tenth of the waveforms are non-negative. Positive phases of non-negative spikes occur in synchrony or just before wider same-unit negative spikes. Narrow positive spikes occur in isolation in the white matter. Isolated biphasic spikes are narrower than negative spikes, occurring right after spikes of verified inhibitory units. In CA1, units with dominant non-negative spikes exhibit place fields, phase precession, and phase-locking to ripples. Thus, near-somatic narrow positive extracellular potentials correspond to return currents, and isolated non-negative spikes correspond to axonal potentials. Identifying non-negative extracellular waveforms that correspond to non-somatic compartments during spikes can enhance the understanding of physiological and pathological neural mechanisms in intact animals.
Collapse
Affiliation(s)
- Shirly Someck
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Hadas E Sloin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Lidor Spivak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Roni Gattegno
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Sagol Department of Neurobiology, Haifa University, Haifa, 3103301, Israel.
| |
Collapse
|