1
|
Papaioannou S, Medini P. Advantages, Pitfalls, and Developments of All Optical Interrogation Strategies of Microcircuits in vivo. Front Neurosci 2022; 16:859803. [PMID: 35837124 PMCID: PMC9274136 DOI: 10.3389/fnins.2022.859803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
The holy grail for every neurophysiologist is to conclude a causal relationship between an elementary behaviour and the function of a specific brain area or circuit. Our effort to map elementary behaviours to specific brain loci and to further manipulate neural activity while observing the alterations in behaviour is in essence the goal for neuroscientists. Recent advancements in the area of experimental brain imaging in the form of longer wavelength near infrared (NIR) pulsed lasers with the development of highly efficient optogenetic actuators and reporters of neural activity, has endowed us with unprecedented resolution in spatiotemporal precision both in imaging neural activity as well as manipulating it with multiphoton microscopy. This readily available toolbox has introduced a so called all-optical physiology and interrogation of circuits and has opened new horizons when it comes to precisely, fast and non-invasively map and manipulate anatomically, molecularly or functionally identified mesoscopic brain circuits. The purpose of this review is to describe the advantages and possible pitfalls of all-optical approaches in system neuroscience, where by all-optical we mean use of multiphoton microscopy to image the functional response of neuron(s) in the network so to attain flexible choice of the cells to be also optogenetically photostimulated by holography, in absence of electrophysiology. Spatio-temporal constraints will be compared toward the classical reference of electrophysiology methods. When appropriate, in relation to current limitations of current optical approaches, we will make reference to latest works aimed to overcome these limitations, in order to highlight the most recent developments. We will also provide examples of types of experiments uniquely approachable all-optically. Finally, although mechanically non-invasive, all-optical electrophysiology exhibits potential off-target effects which can ambiguate and complicate the interpretation of the results. In summary, this review is an effort to exemplify how an all-optical experiment can be designed, conducted and interpreted from the point of view of the integrative neurophysiologist.
Collapse
|
2
|
Denison T, Morrell MJ. Neuromodulation in 2035: The Neurology Future Forecasting Series. Neurology 2022; 98:65-72. [PMID: 35263267 PMCID: PMC8762584 DOI: 10.1212/wnl.0000000000013061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Neuromodulation devices are approved in the United States for the treatment of movement disorders, epilepsy, pain, and depression, and are used off-label for other neurologic indications. By 2035, advances in our understanding of neuroanatomical networks and in the mechanism of action of stimulation, coupled with developments in material science, miniaturization, energy storage, and delivery, will expand the use of neuromodulation devices. Neuromodulation approaches are flexible and modifiable. Stimulation can be targeted to a dysfunctional brain focus, region, or network, and can be delivered as a single treatment, continuously, according to a duty cycle, or in response to physiologic changes. Programming can be titrated and modified based on the clinical response or a physiologic biomarker. In addition to keeping pace with clinical and technological developments, neurologists in 2035 will need to navigate complex ethical and economic considerations to ensure access to neuromodulation technology for a rapidly expanding population of patients. This article provides an overview of systems in use today and those that are anticipated and highlights the opportunities and challenges for the future, some of which are technical, but most of which will be addressed by learning about brain networks, and from rapidly growing experience with neuromodulation devices.
Collapse
Affiliation(s)
- Tim Denison
- From the Department of Engineering Science (T.D.), University of Oxford, UK; Department of Neurology and Neurological Sciences (M.J.M), Stanford University, CA; and NeuroPace (M.J.M), Mountain View, CA
| | - Martha J Morrell
- From the Department of Engineering Science (T.D.), University of Oxford, UK; Department of Neurology and Neurological Sciences (M.J.M), Stanford University, CA; and NeuroPace (M.J.M), Mountain View, CA.
| |
Collapse
|
3
|
Miranda C, Howell MR, Lusk JF, Marschall E, Eshima J, Anderson T, Smith BS. Automated microscope-independent fluorescence-guided micropipette. BIOMEDICAL OPTICS EXPRESS 2021; 12:4689-4699. [PMID: 34513218 PMCID: PMC8407805 DOI: 10.1364/boe.431372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Glass micropipette electrodes are commonly used to provide high resolution recordings of neurons. Although it is the gold standard for single cell recordings, it is highly dependent on the skill of the electrophysiologist. Here, we demonstrate a method of guiding micropipette electrodes to neurons by collecting fluorescence at the aperture, using an intra-electrode tapered optical fiber. The use of a tapered fiber for excitation and collection of fluorescence at the micropipette tip couples the feedback mechanism directly to the distance between the target and electrode. In this study, intra-electrode tapered optical fibers provide a targeted robotic approach to labeled neurons that is independent of microscopy.
Collapse
Affiliation(s)
- Christopher Miranda
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Madeleine R. Howell
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Joel F. Lusk
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Ethan Marschall
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Jarrett Eshima
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| | - Trent Anderson
- University of Arizona, College of Medicine – Phoenix, Phoenix, AZ 85004, USA
| | - Barbara S. Smith
- Arizona State University, School of Biological and Health Systems Engineering, Tempe, AZ 85210, USA
| |
Collapse
|
4
|
Liang Y, de la Prida LM. Optical and genetic tools for in vivo single cell tracking. J Neurosci Methods 2021; 358:109192. [PMID: 33848560 DOI: 10.1016/j.jneumeth.2021.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yajie Liang
- University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, United States.
| | | |
Collapse
|
5
|
Alegre-Cortés J, Sáez M, Montanari R, Reig R. Medium spiny neurons activity reveals the discrete segregation of mouse dorsal striatum. eLife 2021; 10:e60580. [PMID: 33599609 PMCID: PMC7924950 DOI: 10.7554/elife.60580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.
Collapse
Affiliation(s)
| | - María Sáez
- Instituto de Neurociencias CSIC-UMHSan Juan de AlicanteSpain
| | | | - Ramon Reig
- Instituto de Neurociencias CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|
6
|
Yu J, Ling W, Li Y, Ma N, Wu Z, Liang R, Pan H, Liu W, Fu B, Wang K, Li C, Wang H, Peng H, Ning B, Yang J, Huang X. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005925. [PMID: 33372299 DOI: 10.1002/smll.202005925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Optical fibers made of polymeric materials possess high flexibility that can potentially integrate with flexible electronic devices to realize complex functions in biology and neurology. Here, a multichannel flexible device based on four individually addressable optical fibers transfer-printed with flexible electronic components and controlled by a wireless circuit is developed. The resulting device offers excellent mechanics that is compatible with soft and curvilinear tissues, and excellent diversity through switching different light sources. The combined configuration of optical fibers and flexible electronics allows optical stimulation in selective wavelengths guided by the optical fibers, while conducting distributed, high-throughput biopotential sensing using the flexible microelectrode arrays. The device has been demonstrated in vivo with rats through optical stimulation and simultaneously monitoring of spontaneous/evoked spike signals and local field potentials using 32 microelectrodes in four brain regions. Biocompatibility of the device has been characterized by behavior and immunohistochemistry studies, demonstrating potential applications of the device in long-term animal studies. The techniques to integrate flexible electronics with optical fibers may inspire the development of more flexible optoelectronic devices for sophisticated applications in biomedicine and biology.
Collapse
Affiliation(s)
- Jingxian Yu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ya Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ning Ma
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Rong Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Huizhuo Pan
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wentao Liu
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Bo Fu
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Kun Wang
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Chenxi Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hanjie Wang
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hui Peng
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Jiajia Yang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Asia-Pacific Road, Zhejiang, Jiaxing, 314006, China
| |
Collapse
|