1
|
Saliba I, Bachy-Razzouk M, Bensidhoum M, Hoc T, Potier E, Vialle R, Hardy A. Analysis of a Chronic Lateral Ankle Instability Model in the Rat: Conclusions and Suggestions for Future Research. Life (Basel) 2024; 14:829. [PMID: 39063583 PMCID: PMC11278175 DOI: 10.3390/life14070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The purpose of this study was to evaluate potential osteoarthritic alterations within the ankle using a surgically-induced chronic lateral ankle instability (CLAI) model. Twelve rats were assigned randomly to either the control (n = 4) or CLAI group (n = 8). Surgery was performed on the right ankle. Osteoarthritis was assessed through in-vivo micro-CT at 8 weeks and a clinical analysis. Macroscopic analysis, high-resolution ex-vivo micro-CT and histological examination were conducted after euthanasia at 12 weeks. Three subgroups (SG) were analyzed. SG1 comprised the operated ankles of the CLAI group (n = 8). SG2 consisted of the non-operated ankles of the CLAI group (n = 8). SG3 included both sides of the control group (n = 8). In-vivo micro-CT revealed no significant differences among the three subgroups when analyzed together (p = 0.42), and when comparing SG1 with SG2 (p = 0.23) and SG3 (p = 0.43) individually. No noticeable clinical differences were observed. After euthanasia, macroscopic analysis employing OARSI score, did not demonstrate significant differences, except between the medial tibia of SG1 and SG3 (p = 0.03), and in the total score comparison between these two subgroups (p = 0.015). Ex-vivo micro-CT did not reveal any differences between the three subgroups regarding bony irregularities and BV/TV measurements (SG1 vs. SG2 vs. SG3: p = 0.72; SG1 vs. SG2: p = 0.80; SG1 vs. SG3: p = 0.72). Finally, there was no difference between the three subgroups regarding OARSI histologic score (p = 0.27). These findings indicate that the current model failed to induce significant osteoarthritis. However, they lay the groundwork for improving the model's effectiveness and expanding its use in CLAI research, aiming to enhance understanding of this pathology and reduce unnecessary animal sacrifice.
Collapse
Affiliation(s)
- Ibrahim Saliba
- Orthopedics Department, Cochin Hospital, 75014 Paris, France
| | - Manon Bachy-Razzouk
- Orthopedics Department, Armand Trousseau Hospital, 75012 Paris, France; (M.B.-R.); (R.V.)
| | - Morad Bensidhoum
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
| | - Thierry Hoc
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
- Mechanical Department, Ecole Centrale—Lyon, 69134 Ecully, France
| | - Esther Potier
- CNRS, INSERM, ENVA, B3OA, University of Paris Cite, 75010 Paris, France; (M.B.); (T.H.); (E.P.)
| | - Raphaël Vialle
- Orthopedics Department, Armand Trousseau Hospital, 75012 Paris, France; (M.B.-R.); (R.V.)
| | | |
Collapse
|
2
|
Kiriaev L, Baumann CW, Lindsay A. Eccentric contraction-induced strength loss in dystrophin-deficient muscle: Preparations, protocols, and mechanisms. J Gen Physiol 2023; 155:213810. [PMID: 36651896 PMCID: PMC9856740 DOI: 10.1085/jgp.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Muscle Research Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Cory W. Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA,Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia,Correspondence to Angus Lindsay:
| |
Collapse
|
3
|
Williams MD, Meyers RC, Braxton LA, Diekman B, Lascelles BDX. Pilot comparison of outcome measures across chemical and surgical experimental models of chronic osteoarthritis in the rat (Rattus norvegicus). PLoS One 2022; 17:e0277943. [PMID: 36409758 PMCID: PMC9678322 DOI: 10.1371/journal.pone.0277943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Relatively little work has evaluated both the disease of osteoarthritis (OA) and clinically-relevant pain outcome measures across different OA models in rats. The objective of this study was to compare sensitivity, pain, and histological disease severity across chemical and surgical models of OA in the rat. Stifle OA was induced in Sprague-Dawley rats via intraarticular injection of monoiodoacetate (MIA) or surgical transection of anterior cruciate ligament and/or destabilization of medial meniscus (ACL+DMM or DMM alone). Reflexive (e.g., mechanical and thermal stimuli) measures of sensitivity and non-reflexive assays (e.g., lameness, static hindlimb weight-bearing asymmetry, dynamic gait analysis) of pain were measured over time. Joint degeneration was assessed histologically. Six-weeks post OA-induction, the ACL+DMM animals had significantly greater visually observed lameness than MIA animals; however, both ACL+DMM and MIA animals showed equal pain as measured by limb use during ambulation and standing. The MIA animals showed increased thermal, but not mechanical, sensitivity compared to ACL+DMM animals. Joint degeneration was significantly more severe in the MIA model at 6 weeks. Our pilot data suggest both the ACL+DMM and MIA models are equal in terms of clinically relevant pain behaviors, but the MIA model is associated with more severe histological changes over time potentially making it more suitable for screening disease modifying agents. Future work should further characterize each model in terms of complex pain behaviors and biochemical, molecular, and imaging analysis of the sensory system and joint tissues, which will allow for more informed decisions associated with model selection and investigative outcomes.
Collapse
Affiliation(s)
- Morika D. Williams
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Translational Research in Pain Program, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rachel C. Meyers
- Translational Research in Pain Program, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lauryn A. Braxton
- Translational Research in Pain Program, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Brian Diekman
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, United States of America
| | - B. Duncan X. Lascelles
- Translational Research in Pain Program, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Translational Pain Medicine, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
4
|
Ma L, Liu S, Yi M, Wan Y. Spontaneous pain as a challenge of research and management in chronic pain. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:308-319. [PMID: 37724190 PMCID: PMC10388751 DOI: 10.1515/mr-2022-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
Spontaneous pain occurring without apparent external stimuli, is a significant complaint of individuals with chronic pain whose mechanisms, somewhat surprisingly, remain poorly understood. Over the past decades, neuroimaging studies start to reveal brain activities accompanying spontaneous pain. Meanwhile, a variety of animal models and behavioral tests have been established, including non-reflexive tests and free-choice tests, which have been shown to be effective in assessing spontaneous pain. For the spontaneous pain mechanisms, multiple lines of research mainly focus on three aspects: (1) sensitization of peripheral nociceptor receptors and ion channels, (2) spontaneous neuronal firing and abnormal activity patterns at the dorsal root ganglion and spinal cord level, (3) functional and structural alterations in the brain, particularly the limbic system and the medial pain pathway. Despite accumulating evidence revealing distinct neuronal mechanisms from evoked pain, we are still far from full understanding of spontaneous pain, leaving a big gap between bench and bedside for chronic pain treatment. A better understanding of the neural processes in chronic pain, with specific linkage as to which anatomical structures and molecules related to spontaneous pain perception and comorbidities, will greatly improve our ability to develop novel therapeutics.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuting Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
5
|
Minnema L, Gupta A, Mishra SK, Lascelles BDX. Investigating the Role of Artemin and Its Cognate Receptor, GFRα3, in Osteoarthritis Pain. Front Neurosci 2022; 16:738976. [PMID: 35153665 PMCID: PMC8829392 DOI: 10.3389/fnins.2022.738976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) associated pain (OA-pain) is a significant global problem. OA-pain limits limb use and mobility and is associated with widespread sensitivity. Therapeutic options are limited, and the available options are often associated with adverse effects. The lack of therapeutic options is partly due to a lack of understanding of clinically relevant underlying neural mechanisms of OA-pain. In previous work in naturally occurring OA-pain in dogs, we identified potential signaling molecules (artemin/GFRα3) that were upregulated. Here, we use multiple approaches, including cellular, mouse genetic, immunological suppression in a mouse model of OA, and clinically relevant measures of sensitivity and limb use to explore the functional role of artemin/GFRα3 signaling in OA-pain. We found the monoiodoacetate (MIA)-induced OA-pain in mice is associated with decreased limb use and hypersensitivity. Exogenous artemin induces mechanical, heat, and cold hypersensitivity, and systemic intraperitoneal anti-artemin monoclonal antibody administration reverses this hypersensitivity and restores limb use in mice with MIA-induced OA-pain. An artemin receptor GFRα3 expression is increased in sensory neurons in the MIA model. Our results provide a molecular basis of arthritis pain linked with artemin/GFRα3 signaling and indicate that further work is warranted to investigate the neuronal plasticity and the pathways that drive pain in OA.
Collapse
Affiliation(s)
- Laura Minnema
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Santosh K. Mishra
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Santosh K. Mishra,
| | - B. Duncan X. Lascelles
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, United States
- B. Duncan X. Lascelles,
| |
Collapse
|
6
|
Pham‐Nguyen O, Son YJ, Kwon T, Kim J, Jung YC, Park JB, Kang B, Yoo HS. Preparation of Stretchable Nanofibrous Sheets with Sacrificial Coaxial Electrospinning for Treatment of Traumatic Muscle Injury. Adv Healthc Mater 2021; 10:e2002228. [PMID: 33506655 DOI: 10.1002/adhm.202002228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/09/2022]
Abstract
Traumatic muscle injury with massive loss of muscle volume requires intramuscular implantation of proper scaffolds for fast and successful recovery. Although many artificial scaffolds effectively accelerate formation and maturation of myotubes, limited studies are showing the therapeutic effect of artificial scaffolds in animal models with massive muscle injury. In this study, improved myotube differentiation is approved on stepwise stretched gelatin nanofibers and applied to damaged muscle recovery in an animal model. The gelatin nanofibers are fabricated by a two-step process composed of co-axial electrospinning of poly(ɛ-caprolactone) and gelatin and subsequent removal of the outer shells. When stepwise stretching is applied to the myoblasts on gelatin nanofibers for five days, enhanced myotube formation and polarized elongation are observed. Animal models with volumetric loss at quadriceps femoris muscles (>50%) are transplanted with the myotubes cultivated on thin and flexible gelatin nanofiber. Treated animals more efficiently recover exercising functions of the leg when myotubes and the gelatin nanofiber are co-implanted at the injury sites. This result suggests that mechanically stimulated myotubes on gelatin nanofiber is therapeutically feasible for the robust recovery of volumetric muscle loss.
Collapse
Affiliation(s)
- Oanh‐Vu Pham‐Nguyen
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| | - Young Ju Son
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| | - Tae‐wan Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science Kangwon National University Chuncheon 24341 Republic of Korea
| | - Junhyung Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science Kangwon National University Chuncheon 24341 Republic of Korea
| | - Yun Chan Jung
- Chaon 331 Pangyo‐ro Bundang‐gu Seongnam Gyeonggi‐do 13488 Republic of Korea
| | - Jong Bae Park
- Jeonju Center Korea Basic Science Institute Jeonju 54907 Republic of Korea
| | - Byung‐Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine Research Institute for Veterinary Science BK21 PLUS Program for Creative Veterinary Science Research Seoul National University Seoul 08826 Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|