1
|
Greene JJ, Gorelik P, Mazor O, Guarin DL, Malk R, Hadlock T. Freeing the Animal Model: A Modular, Wirelessly Powered, Implantable Electronic Platform. Plast Reconstr Surg 2024; 153:568e-572e. [PMID: 37184506 DOI: 10.1097/prs.0000000000010676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
SUMMARY Fully implantable electronic devices in freely roaming animal models are useful in biomedical research, but their development is prohibitively resource intensive for many laboratories. The advent of miniaturized microcontrollers with onboard wireless data exchange capabilities has enabled cost-efficient development of myriad do-it-yourself electronic devices that are easily customizable with open-source software ( https://www.arduino.cc/ ). Likewise, the global proliferation of mobile devices has led to the development of low-cost miniaturized wireless power technology. The authors present a low-cost, rechargeable, and fully implantable electronic device comprising a commercially available, open-source, wirelessly powered microcontroller that is readily customizable with myriad readily available miniature sensors and actuators. The authors demonstrate the utility of this platform for chronic nerve stimulation in the freely roaming rat with intermittent wireless charging over 4 weeks. Device assembly was achieved within 2 hours and necessitated only basic soldering equipment. Component costs totaled $115 per device. Wireless data transfer and wireless recharging of device batteries was achieved within 30 minutes, and no harmful heat generation occurred during charging or discharging cycles, as measured by external thermography and internal device temperature monitoring. Wireless communication enabled triggered cathodic pulse stimulation of the facial nerve at various user-selected programmed frequencies (1, 5, and 10 Hz) for periods of 4 weeks or longer. This implantable electronic platform could be further miniaturized and expanded to study a vast array of biomedical research questions in live animal models. CLINICAL RELEVANCE STATEMENT The clinical relevance of electrical stimulation in neural recovery remains controversial, and long-term neural stimulation in small animal models is challenging. We have developed a low-cost, fully implantable, wirelessly powered nerve stimulation device to facilitate further research in nerve stimulation in animal models.
Collapse
Affiliation(s)
| | - Pavel Gorelik
- Research Instrumentation Core Facility, Department of Neurobiology, Harvard Medical School
| | - Ofer Mazor
- Research Instrumentation Core Facility, Department of Neurobiology, Harvard Medical School
| | | | - Ronit Malk
- From the Massachusetts Eye & Ear Infirmary
| | | |
Collapse
|
2
|
Li Z, Zhai S, Liu S, Chen C, Guo X, Hu P, Wang B, Zhang Y, Wei F, Liu Z. A sheep model of chronic cervical compressive myelopathy via an implantable wireless compression device. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1219-1227. [PMID: 35192070 DOI: 10.1007/s00586-022-07138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE This study aimed to establish an animal model in which we can precisely displace the spinal cord and therefore mimic the chronic spinal compression of cervical spondylotic myelopathy. METHODS In vivo intervertebral compression devices (IVCDs) connected with subcutaneous control modules (SCCMs) were implanted into the C2-3 intervertebral disk spaces of sheep and connected by Bluetooth to an in vitro control system. Sixteen sheep were divided into four groups: (Group A) control; (Group B) 10-week progressive compression, then held; (Group C) 20-week progressive compression, then held; and (Group D) 20-week progressive compression, then decompression. Electrophysiological analysis (latency and amplitude of the N1-P1-N2 wave in somatosensory evoked potentials, SEP), behavioral changes (Tarlov score), imaging test (encroachment ratio (ER) of intraspinal invasion determined by X-ray and CT scan), and histological examinations (hematoxylin and eosin, Nissl, and TUNEL staining) were performed to assess the efficacy of our model. RESULTS Tarlov scores gradually decreased as compression increased with time and partially recovered after decompression. The Pearson correlation coefficient between ER and time was r = 0.993 (p < 0.001) in Group B at 10 weeks and Groups C and D at 20 weeks. And ER was negatively correlated with the Tarlov score (r = -0.878, p < 0.001). As compression progressed, the SEP latency was significantly extended (p < 0.001), and the amplitude significantly decreased (p < 0.001), while they were both partially restored after decompression. The number of abnormal motor neurons and TUNEL-positive cells increased significantly (p < 0.001) with compression. CONCLUSION Our implantable and wireless intervertebral compression model demonstrated outstanding controllability and reproducibility in simulating chronic cervical spinal cord compression in animals.
Collapse
Affiliation(s)
- Zihe Li
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuheng Zhai
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shanshan Liu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinhu Guo
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Panpan Hu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Youyu Zhang
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Feng Wei
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China. .,Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| |
Collapse
|
3
|
Advances in facial nerve management in the head and neck cancer patient. Curr Opin Otolaryngol Head Neck Surg 2020; 28:235-240. [PMID: 32628417 DOI: 10.1097/moo.0000000000000641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize best practices in facial nerve management for patients with head and neck cancer. In addition, we provide a review of recent literature on novel innovations and techniques in facial reanimation surgery. RECENT FINDINGS Although recommended when tumor ablation surgery requires facial nerve sacrifice, facial reanimation procedures are not always performed. Concurrent dynamic facial reanimation with masseteric nerve transfers and cable graft repair can preserve native facial muscle function. Static suspension can provide facial support and immediate resting symmetry for patients. Eyelid weight and eye care should not be delayed, particularly in patients with trigeminal sensory deficits. Choice of neural source to innervate a gracilis-free muscle transfer for smile reanimation remains controversial; however, new techniques, such as dual innervation and multivector muscle transfer, may improve aesthetic and functional outcomes. SUMMARY Management of the facial nerve in the setting of head and neck cancer presents unique challenges. When possible, simultaneous oncologic resection and facial reanimation is ideal given the open surgical field, newly dissected and electrically stimulatable facial nerve branches, as well as minimizing postoperative healing time to prevent postsurgical treatment delays. A coordinated approach to facial nerve management with a multidisciplinary surgical team may help provide optimal, comprehensive care.
Collapse
|