1
|
Nguyen MTD, Phan Xuan NY, Pham BM, Do HTM, Phan TNM, Nguyen QTT, Duong AHL, Huynh VK, Hoang BDC, Ha HTT. Optimize temporal configuration for motor imagery-based multiclass performance and its relationship with subject-specific frequency. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2022.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
2
|
Zhang S, Zhu Z, Zhang B, Feng B, Yu T, Li Z, Zhang Z, Huang G, Liang Z. Overall optimization of CSP based on ensemble learning for motor imagery EEG decoding. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Mohseni E, Moghaddasi SM. A Hybrid Approach for MS Diagnosis Through Nonlinear EEG Descriptors and Metaheuristic Optimized Classification Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5430528. [PMID: 35619773 PMCID: PMC9129937 DOI: 10.1155/2022/5430528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS), a disease of the central nervous system, affects the white matter of the brain. Neurologists interpret magnetic resonance images that are often complicated, time-consuming, and contradictory. Using EEG signals, this disease can be analyzed and diagnosed more accurately. However, it is imperative that MS be diagnosed by specialists using assistive technology. Until now, a few methods have been proposed in this field that are sometimes associated with different challenges in analysis. This paper presents a hybrid approach to MS diagnosis in order to decrease classification error rates. Using the proposed method, EEG descriptors in both the time and frequency domains are analyzed. After the feature extraction stage, a modified version of the ant colony optimization method (m-ACO) was used to select the appropriate subset of features. Then, the support vector machine is used to determine whether the disease exists. A metaheuristic algorithm adjusts the support vector machine's parameters to withstand overfitting challenges. Despite a limited number of input channels, significant classification accuracy has been achieved using wavelet analysis techniques, dividing all five subbands of EEG signals, signal windowing, and extracting efficient features from the data. Additionally, alpha, beta, and gamma bands of the signal are important, and the accuracy, sensitivity, and specificity levels are higher than 98.5%. Compared to similar MS diagnostic methods, the proposed method achieved significantly higher diagnostic accuracy. Application and implementation of this method can be effective in treating neurological diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Elnaz Mohseni
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
4
|
Liu G, Tian L, Zhou W. Multiscale time-frequency method for multiclass Motor Imagery Brain Computer Interface. Comput Biol Med 2022; 143:105299. [PMID: 35158119 DOI: 10.1016/j.compbiomed.2022.105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Motor Imagery Brain Computer Interface (MI-BCI) has become a promising technology in the field of neurorehabilitation. However, the performance and computational complexity of the current multiclass MI-BCI have not been fully optimized, and the intuitive interpretation of individual differences on motor imagery tasks is seldom investigated. In this paper, a well-designed multiscale time-frequency segmentation scheme is first applied to multichannel EEG recordings to obtain Time-Frequency Segments (TFSs). Then, the TFS selection based on a specific wrapper feature selection rule is utilized to determine optimum TFSs. Next, One-Versus-One (OvO)-divCSP implemented in divergence framework is used to extract discriminative features. Finally, One-Versus-Rest (OvR)-SVM is utilized to predict the class label based on selected multiclass MI features. Experimental results indicate our method yields a superior performance on two publicly available multiclass MI datasets with a mean accuracy of 80.00% and a mean kappa of 0.73. Meanwhile, the proposed TFS selection method can significantly alleviate the computational burden with little accuracy reduction, demonstrating the feasibility of real-time multiclass MI-BCI. Furthermore, the Motor Imagery Time-Frequency Reaction Map (MI-TFRM) is visualized, contributing to analyzing and interpreting the performance differences between different subjects.
Collapse
Affiliation(s)
- Guoyang Liu
- School of Microelectronics, Shandong University, Jinan, 250100, PR China
| | - Lan Tian
- School of Microelectronics, Shandong University, Jinan, 250100, PR China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
5
|
Huang Y, Jin J, Xu R, Miao Y, Liu C, Cichocki A. Multi-view optimization of time-frequency common spatial patterns for brain-computer interfaces. J Neurosci Methods 2022; 365:109378. [PMID: 34626685 DOI: 10.1016/j.jneumeth.2021.109378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Common spatial pattern (CSP) is a prevalent method applied to feature extraction in motor imagery (MI)-based brain-computer interfaces (BCIs) recorded by electroencephalogram (EEG). The selection of time windows and frequency bands prominently affects the performance of CSP algorithms. Concerning the joint optimization of these two parameters, several studies have utilized a unified framework based on different feature selection strategies and achieved considerable improvement. However, during the feature selection process, useful information could be discarded inevitably and the underlying internal structure of features could be neglected. NEW METHOD In this paper, we proposed a novel framework termed time window filter bank common spatial pattern with multi-view optimization (TWFBCSP-MVO) to further boost the decoding of MI tasks. Concretely, after extracting CSP features from different time-frequency decompositions of EEG signals, a preliminary screening strategy based on variance ratio was devised to filter out the unrelated spatial patterns. We then introduced a multi-view learning strategy for the simultaneous optimization of time windows and frequency bands. A support vector machine classifier was trained to determine the output of the brain. RESULTS An experimental study was conducted on two public datasets to verify the effectiveness of TWFBCSP-MVO. Results showed that the proposed TWFBCSP-MVO could help improve the performance of MI classification. COMPARISON WITH EXISTING METHODS In comparison to other competing methods, the proposed method performed significantly better (p<0.01). CONCLUSIONS The proposed method is a promising contestant to improve the performance of practical MI-based BCIs.
Collapse
Affiliation(s)
- Yitao Huang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China.
| | - Ren Xu
- Guger Technologies OG, Herbersteinstraße 60, 8020 Graz, Austria
| | - Yangyang Miao
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Chang Liu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Andrzej Cichocki
- The Skolkowo Institute of Science and Technology, Moscow 143025, Russia; Nicolaus Copernicus University (UMK), 87-100 Torun, Poland
| |
Collapse
|
6
|
Liu C, Jin J, Xu R, Li S, Zuo C, Sun H, Wang X, Cichocki A. Distinguishable spatial-spectral feature learning neural network framework for motor imagery-based brain-computer interface. J Neural Eng 2021; 18. [PMID: 34384059 DOI: 10.1088/1741-2552/ac1d36] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 11/11/2022]
Abstract
Objective.Spatial and spectral features extracted from electroencephalogram (EEG) are critical for the classification of motor imagery (MI) tasks. As prevalently used methods, the common spatial pattern (CSP) and filter bank CSP (FBCSP) can effectively extract spatial-spectral features from MI-related EEG. To further improve the separability of the CSP features, we proposed a distinguishable spatial-spectral feature learning neural network (DSSFLNN) framework for MI-based brain-computer interfaces (BCIs) in this study.Approach.The first step of the DSSFLNN framework was to extract FBCSP features from raw EEG signals. Then two squeeze-and-excitation modules were used to re-calibrate CSP features along the band-wise axis and the class-wise axis, respectively. Next, we used a parallel convolutional neural network module to learn distinguishable spatial-spectral features. Finally, the distinguishable spatial-spectral features were fed to a fully connected layer for classification. To verify the effectiveness of the proposed framework, we compared it with the state-of-the-art methods on BCI competition IV datasets 2a and 2b.Main results.The results showed that the DSSFLNN framework can achieve a mean Cohen's kappa value of 0.7 on two datasets, which outperformed the state-of-the-art methods. Moreover, two additional experiments were conducted and they proved that the combination of band-wise feature learning and class-wise feature learning can achieve significantly better performance than only using either one of them.Significance.The proposed DSSFLNN can effectively improve the decoding performance of MI-based BCIs.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ren Xu
- Guger Technologies OG, Herbersteinstraße 60, 8020 Graz, Austria
| | - Shurui Li
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cili Zuo
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hao Sun
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xingyu Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology (Skoltech), 121205 Moscow, Russia.,Department of Applied Computer Science, Nicolaus Copernicus University (UMK), 87-100 Torun, Poland
| |
Collapse
|
7
|
Li S, Jin J, Daly I, Wang X, Lam HK, Cichocki A. Enhancing P300 based character recognition performance using a combination of ensemble classifiers and a fuzzy fusion method. J Neurosci Methods 2021; 362:109300. [PMID: 34343575 DOI: 10.1016/j.jneumeth.2021.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND P300-based brain-computer interfaces provide communication pathways without the need for muscle activity by recognizing electrical signals from the brain. The P300 speller is one of the most commonly used BCI applications, as it is very simple and reliable, and it is capable of reaching satisfactory communication performance. However, as with other BCIs, it remains a challenge to improve the P300 speller's performance to increase its practical usability. NEW METHODS In this study, we propose a novel multi-feature subset fuzzy fusion (MSFF) framework for the P300 speller to recognize the users' spelling intention. This method includes two parts: 1) feature selection by the Lasso algorithm and feature division; 2) the construction of ensemble LDA classifiers and the fuzzy fusion of those classifiers to recognize user intention. RESULTS The proposed framework is evaluated in three public datasets and achieves an average accuracy of 100% after 4 epochs for BCI Competition II Dataset IIb, 96% for BCI Competition III dataset II and 98.3% for the BNCI Horizon Dataset. It indicates that the proposed MSFF method can make use of temporal information of signals and helps to enhance classification performance. COMPARISON WITH EXISTING METHODS The proposed MSFF method yields better or comparable performance than previously reported machine learning algorithms. CONCLUSIONS The proposed MSFF method is able to improve the performance of P300-based BCIs.
Collapse
Affiliation(s)
- Shurui Li
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China.
| | - Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Xingyu Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Hak-Keung Lam
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology (SKOLTECH), 143026 Moscow, Russia; Systems Research Institute PAS, Warsaw, Poland; Nicolaus Copernicus University (UMK), Torun, Poland
| |
Collapse
|
8
|
Zuo C, Jin J, Xu R, Wu L, Liu C, Miao Y, Wang X. Cluster decomposing and multi-objective optimization based-ensemble learning framework for motor imagery-based brain-computer interfaces. J Neural Eng 2021; 18. [PMID: 33524961 DOI: 10.1088/1741-2552/abe20f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Motor imagery (MI) is a mental representation of motor behavior and a widely used pattern in electroencephalogram (EEG) based brain-computer interface (BCI) systems. EEG is known for its non-stationary, non-linear features and sensitivity to artifacts from various sources. This study aimed to design a powerful classifier with a strong generalization capability for MI based BCIs. APPROACH In this study, we proposed a cluster decomposing based ensemble learning framework (CDECL) for EEG classification of MI based BCIs. The EEG data was decomposed into sub-data sets with different distributions by clustering decomposition. Then a set of heterogeneous classifiers was trained on each sub-data set for generating a diversified classifier search space. To obtain the optimal classifier combination, the ensemble learning was formulated as a multi-objective optimization problem and a stochastic fractal based binary multi-objective fruit fly optimization algorithm was proposed for solving the ensemble learning problem. MAIN RESULTS The proposed method was validated on two public EEG datasets (BCI Competition IV datasets IIb and BCI Competition IV dataset IIa) and compared with several other competing classification methods. Experimental results showed that the proposed CDECL based methods can effectively construct a diversity ensemble classifier and exhibits superior classification performance in comparison with several competing methods. SIGNIFICANCE The proposed method is promising for improving the performance of MI-based BCIs.
Collapse
Affiliation(s)
- Cili Zuo
- East China University of Science and Technology, 130 Meilong road, Shanghai, Shanghai, 200237, CHINA
| | - Jing Jin
- Key Laboratory of Advanced Control and Optimization for Chemical Processes Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai 200237, SHANGHAI, 200237, CHINA
| | - Ren Xu
- Guger Technologies OG, Sierningstrasse 14, Graz, 8020, AUSTRIA
| | - Lianghong Wu
- Hunan University of Science and Technology, Tiaoyuan Road, Xiangtan, 411201, CHINA
| | - Chang Liu
- East China University of Science and Technology, 130 Meilong Road, Shanghai, Shanghai, 200237, CHINA
| | - Yangyang Miao
- East China University of Science and Technology, 130 Meilong raod, Shanghai, Shanghai, 200237, CHINA
| | - Xingyu Wang
- East China University of Science and Technology, 130 Meilong Road, Shanghai, Shanghai, 200237, CHINA
| |
Collapse
|