1
|
Tu WY, Xu W, Bai L, Liu J, Han Y, Luo B, Wang B, Zhang K, Shen C. Local protein synthesis at neuromuscular synapses is required for motor functions. Cell Rep 2024; 43:114661. [PMID: 39178112 DOI: 10.1016/j.celrep.2024.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024] Open
Abstract
Motor neurons are highly polarized, and their axons extend over great distances to form connections with myofibers via neuromuscular junctions (NMJs). Local translation at the NMJs in vivo has not been identified. Here, we utilized motor neuron-labeled RiboTag mice and the TRAP (translating ribosome affinity purification) technique to spatiotemporally profile the translatome at NMJs. We found that mRNAs associated with glucose catabolism, synaptic connection, and protein homeostasis are enriched at presynapses. Local translation at the synapse shifts from the assembly of cytoskeletal components during early developmental stages to energy production in adulthood. The mRNA of neuronal Agrin (Agrn), the key molecule for NMJ assembly, is present at motor axon terminals and locally translated. Disrupting the axonal location of Agrn mRNA causes impairment of synaptic transmission and motor functions in adult mice. Our findings indicate that spatiotemporal regulation of mRNA local translation at NMJs plays critical roles in synaptic transmission and motor functions in vivo.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Wentao Xu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Lei Bai
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Jun Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Han
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Benyan Luo
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Bingwei Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, First Affiliated Hospital, Hangzhou 310006, China.
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Tu WY, Xu W, Zhang J, Qi S, Bai L, Shen C, Zhang K. C9orf72 poly-GA proteins impair neuromuscular transmission. Zool Res 2023; 44:331-340. [PMID: 36799225 PMCID: PMC10083233 DOI: 10.24272/j.issn.2095-8137.2022.356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron disease, in which lower motoneurons lose control of skeletal muscles. Degeneration of neuromuscular junctions (NMJs) occurs at the initial stage of ALS. Dipeptide repeat proteins (DPRs) from G4C2 repeat-associated non-ATG (RAN) translation are known to cause C9orf72-associated ALS (C9-ALS). However, DPR inclusion burdens are weakly correlated with neurodegenerative areas in C9-ALS patients, indicating that DPRs may exert cell non-autonomous effects, in addition to the known intracellular pathological mechanisms. Here, we report that poly-GA, the most abundant form of DPR in C9-ALS, is released from cells. Local administration of poly-GA proteins in peripheral synaptic regions causes muscle weakness and impaired neuromuscular transmission in vivo. The NMJ structure cannot be maintained, as evidenced by the fragmentation of postsynaptic acetylcholine receptor (AChR) clusters and distortion of presynaptic nerve terminals. Mechanistic study demonstrated that extracellular poly-GA sequesters soluble Agrin ligands and inhibits Agrin-MuSK signaling. Our findings provide a novel cell non-autonomous mechanism by which poly-GA impairs NMJs in C9-ALS. Thus, targeting NMJs could be an early therapeutic intervention for C9-ALS.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Wentao Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Jianmin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Shuyuan Qi
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Lei Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
| | - Chengyong Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China
- MOE Frontier Science, Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China. E-mail:
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Neurobiology, First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, China. E-mail:
| |
Collapse
|
3
|
Wang ZM, Messi ML, Rodrigues ACZ, Delbono O. Skeletal muscle sympathetic denervation disrupts the neuromuscular junction postterminal organization: A single-cell quantitative approach. Mol Cell Neurosci 2022; 120:103730. [PMID: 35489637 PMCID: PMC9793435 DOI: 10.1016/j.mcn.2022.103730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
The sympathetic nervous system (SNS) regulates skeletal muscle motor innervation and stabilizes the NMJ in health, disease and aging. Previous studies using both chemical (6-hydroxydopamine, 6-OHDA) and microsurgically-induced sympathetic denervation examined the NMJ organization and transmission in the mouse; however, a detailed quantification of the postterminal on larger hindlimb muscles involved in gait mechanics and posture is lacking. The purpose of this study was to determine whether targets of the sympathetic neuron (SN) exhibiting different intrinsic composition such as the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus muscles differ in their response to SN deprivation, and to develop a strategy to accurately quantify the impact of sympathectomy on the NMJ postterminal including those fibers located deeper in the muscle. This approach included muscle fixed ex vivo or through transcardial perfusion in mice treated with 6-OHDA or control ascorbic acid. We measured NMJ postterminal mean terminal total area, number of postterminal fragments, mean fragment area, and mean distance between fragments in free-floating alpha-bungarotoxin-stained in 1038 isolated muscle fibers. We found that muscle fiber sympathetic innervation plays a crucial role in the structural organization of the motorneuron-myofiber synapse postterminal and its deprivation leads to AChR cluster dispersion or shrinking as described in various neuromuscular diseases and aging.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Anna Carolina Zaia Rodrigues
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America,the Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America,the Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America,Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States of America,Corresponding author at: Wake Forest School of Medicine, Department of Internal Medicine, Gerontology, Medical Center Boulevard, Winston-Salem, NC 27157, United States of America. (O. Delbono)
| |
Collapse
|
4
|
Pimentel Neto J, Rocha LC, Dos Santos Jacob C, Klein Barbosa G, Ciena AP. Postsynaptic cleft density changes with combined exercise protocols in an experimental model of muscular hypertrophy. Eur J Histochem 2021; 65. [PMID: 34346666 PMCID: PMC8404527 DOI: 10.4081/ejh.2021.3274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The vertical ladder-based protocols contribute to the NMJ junction's adaptations, and when combined with and without load, can be potentiated. The present study aimed to investigate postsynaptic regions of the biceps brachii muscle in adult male Wistar rats submitted to different vertical ladder-based protocols (Sedentary - S; Climbing - C; Climbing with Load - LC and Combined Climbing - CC). The protocols (C, LC, CC) were performed in 24 sessions, 3 x/week, for 8 weeks. The myofibrillar ATPase analysis showed an increase in cross-sectional area (CSA) of the muscle fibers Type I in all trained Groups; Type II in C and LC and reduction in CC; Type IIx higher in all trained Groups. In the postsynaptic cleft, the stained area presents smaller in Groups C, LC, and CC; the total area showed smaller than LC and higher in C and CC. The stained and total perimeter, and dispersion showed a reduction in C, LC, and CC, higher maximum diameter in Groups C and CC, and decreased in LC. Regarding the postsynaptic cleft distribution, the stained area presented a decrease in all trained Groups. The integrated density presented higher principally in CC. The NMJ count showed an increase in all trained Groups. We concluded that the vertical ladder-based protocols combined contributed to the postsynaptic region adaptations.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| |
Collapse
|