1
|
McLain N, Cavaleri R, Kutch J. Peak alpha frequency differs between chronic back pain and chronic widespread pain. Eur J Pain 2025; 29:e4737. [PMID: 39373167 DOI: 10.1002/ejp.4737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Low peak alpha frequency (PAF) is an electroencephalography (EEG) outcome associated reliably with high acute pain sensitivity. However, existing research suggests that the relationship between PAF and chronic pain is more variable. This variability could be attributable to chronic pain groups typically being examined as homogenous populations, without consideration being given to potential diagnosis-specific differences. Indeed, while emerging work has compared individuals with chronic pain to healthy controls, no previous studies have examined differences in PAF between diagnoses or across chronic pain subtypes. METHODS To address this gap, we reanalysed a dataset of resting state EEG previously used to demonstrate a lack of difference in PAF between individuals with chronic pain and healthy controls. In this new analysis, we separated patients by diagnosis before comparing PAF across three subgroups: chronic widespread pain (n = 30), chronic back pain (n = 38), and healthy controls (n = 87). RESULTS We replicate the original finding of no significant difference between chronic pain groups and controls, but also find that individuals with widespread pain had significantly higher global average PAF values than those of people with chronic back pain [p = 0.028, β = 0.25 Hz] after controlling for age, sex, and depression. CONCLUSIONS These novel findings reveal PAF values in individuals with chronic pain may be diagnosis-specific and not uniformly shifted from the values of healthy controls. Future studies should account for diagnosis and be cautious with exploring homogenous 'chronic pain' classifications during investigations of PAF. SIGNIFICANCE Our work suggests that, contrary to previous hypotheses, inter-individual differences in PAF reflect diagnosis-specific mechanisms rather than the general presence of chronic pain, and therefore may have important implications for future work regarding individually-tailored pain management strategies.
Collapse
Affiliation(s)
- Natalie McLain
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Rocco Cavaleri
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Jason Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Mazhari-Jensen DS, Jensen W, Muhammadee Janjua TA, Meijs S, Nørgaard Dos Santos Nielsen TG, Andreis FR. Pigs as a translational animal model for the study of peak alpha frequency. Neuroscience 2025; 565:567-576. [PMID: 39694317 DOI: 10.1016/j.neuroscience.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state. With the potential inclusion of PAF in clinical screening and decision-making, advancing the mechanistic understanding of PAF is warranted. In this paper, we propose the female Danish Landrace pig as a suitable animal model to probe the mechanisms of PAF and its feature as a biomarker. We show that somatosensory alpha oscillations are present in anesthetized pigs using electrocorticography and intracortical electrodes located at the sensorimotor cortex. This was evident when looking at the time-domain as well as the spectral morphology of spontaneous recordings. We applied the FOOOF-algorithm to extract the spectral characteristics and implemented a robustness threshold for any periodic component. Using this conservative threshold, PAF was present in 18/20 pigs with a normal distribution of the peak frequency between 8-12 Hz, producing similar findings to human recordings. We show that PAF was present in 69.6 % of epochs of approximately six-minute-long resting-state recordings. In sum, we propose that the pig is a suitable candidate for investigating the neural mechanisms of PAF as a biomarker for disease and disorders such as pain, neuropsychiatric disorders, and response to pharmacotherapy.
Collapse
Affiliation(s)
- Daniel Skak Mazhari-Jensen
- Neural Engineering and Neurophysiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| | - Winnie Jensen
- Neural Engineering and Neurophysiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Taha Al Muhammadee Janjua
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Suzan Meijs
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Felipe Rettore Andreis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Lopes TS, Santana JE, Silva WS, Fraga FJ, Montoya P, Sá KN, Lopes LC, Lucena R, Zana Y, Baptista AF. Increased Delta and Theta Power Density in Sickle Cell Disease Individuals with Chronic Pain Secondary to Hip Osteonecrosis: A Resting-State Eeg Study. Brain Topogr 2024; 37:859-873. [PMID: 38060074 DOI: 10.1007/s10548-023-01027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Identify the presence of a dysfunctional electroencephalographic (EEG) pattern in individuals with sickle cell disease (SCD) and hip osteonecrosis, and assess its potential associations with depression, anxiety, pain severity, and serum levels of brain-derived neurotrophic factor (BDNF). METHODS In this cross-sectional investigation, 24 SCD patients with hip osteonecrosis and chronic pain were matched by age and sex with 19 healthy controls. Resting-state EEG data were recorded using 32 electrodes for both groups. Power spectral density (PSD) and peak alpha frequency (PAF) were computed for each electrode across Delta, Theta, Alpha, and Beta frequency bands. Current Source Density (CSD) measures were performed utilizing the built-in Statistical nonparametric Mapping Method of the LORETA-KEY software. RESULTS Our findings demonstrated that SCD individuals exhibited higher PSD in delta and theta frequency bands when compared to healthy controls. Moreover, SCD individuals displayed increased CSD in delta and theta frequencies, coupled with decreased CSD in the alpha frequency within brain regions linked to pain processing, motor function, emotion, and attention. In comparison to the control group, depression symptoms, and pain intensity during hip abduction were positively correlated with PSD and CSD in the delta frequency within the parietal region. Depression symptoms also exhibited a positive association with PSD and CSD in the theta frequency within the same region, while serum BDNF levels showed a negative correlation with CSD in the alpha frequency within the left insula. CONCLUSION This study indicates that individuals with SCD experiencing hip osteonecrosis and chronic pain manifest a dysfunctional EEG pattern characterized by the persistence of low-frequency PSD during a resting state. This dysfunctional EEG pattern may be linked to clinical and biochemical outcomes, including depression symptoms, pain severity during movement, and serum BDNF levels.
Collapse
Affiliation(s)
- Tiago S Lopes
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil.
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil.
- Bahia Adventist College, Cachoeira, Brazil.
| | - Jamille E Santana
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
| | | | - Francisco J Fraga
- Engineering, Modelling, and Applied Social Sciences Center, Federal University of ABC, Santo André, SP, Brazil
| | - Pedro Montoya
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- Research Institute of Health Sciences, University of Balearic Islands, Palma de Mallorca, Spain
| | - Katia N Sá
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
- Postgraduate and Research, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Larissa C Lopes
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil
| | - Rita Lucena
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
| | - Abrahão F Baptista
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
- Laboratory of Medical Investigations 54, Clinics Hospital, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
4
|
Millard SK, Speis DB, Skippen P, Chiang AKI, Chang WJ, Lin AJ, Furman AJ, Mazaheri A, Seminowicz DA, Schabrun SM. Can non-invasive brain stimulation modulate peak alpha frequency in the human brain? A systematic review and meta-analysis. Eur J Neurosci 2024; 60:4182-4200. [PMID: 38779808 DOI: 10.1111/ejn.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Peak alpha frequency (PAF), the dominant oscillatory frequency within the alpha range (8-12 Hz), is associated with cognitive function and several neurological conditions, including chronic pain. Manipulating PAF could offer valuable insight into the relationship between PAF and various functions and conditions, potentially providing new treatment avenues. This systematic review aimed to comprehensively synthesise effects of non-invasive brain stimulation (NIBS) on PAF speed. Relevant studies assessing PAF pre- and post-NIBS in healthy adults were identified through systematic searches of electronic databases (Embase, PubMed, PsychINFO, Scopus, The Cochrane Library) and trial registers. The Cochrane risk-of-bias tool was employed for assessing study quality. Quantitative analysis was conducted through pairwise meta-analysis when possible; otherwise, qualitative synthesis was performed. The review protocol was registered with PROSPERO (CRD42020190512) and the Open Science Framework (https://osf.io/2yaxz/). Eleven NIBS studies were included, all with a low risk-of-bias, comprising seven transcranial alternating current stimulation (tACS), three repetitive transcranial magnetic stimulation (rTMS), and one transcranial direct current stimulation (tDCS) study. Meta-analysis of active tACS conditions (eight conditions from five studies) revealed no significant effects on PAF (mean difference [MD] = -0.12, 95% CI = -0.32 to 0.08, p = 0.24). Qualitative synthesis provided no evidence that tDCS altered PAF and moderate evidence for transient increases in PAF with 10 Hz rTMS. However, it is crucial to note that small sample sizes were used, there was substantial variation in stimulation protocols, and most studies did not specifically target PAF alteration. Further studies are needed to determine NIBS's potential for modulating PAF.
Collapse
Affiliation(s)
- Samantha K Millard
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales (UNSW), Kensington, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Darrah B Speis
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
| | - Patrick Skippen
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Alan K I Chiang
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales (UNSW), Kensington, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J Lin
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| | - David A Seminowicz
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Siobhan M Schabrun
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- School of Physical Therapy, University of Western Ontario, London, Ontario, Canada
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada
| |
Collapse
|
5
|
Ho RL, Park J, Wang WE, Thomas JS, Cruz-Almeida Y, Coombes SA. Lower individual alpha frequency in individuals with chronic low back pain and fear of movement. Pain 2024; 165:1033-1043. [PMID: 38112575 PMCID: PMC11018483 DOI: 10.1097/j.pain.0000000000003098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 12/21/2023]
Abstract
ABSTRACT Significant progress has been made in linking measures of individual alpha frequency (IAF) and pain. A lower IAF has been associated with chronic neuropathic pain and with an increased sensitivity to pain in healthy young adults. However, the translation of these findings to chronic low back pain (cLBP) are sparse and inconsistent. To address this limitation, we assessed IAFs in a cohort of 70 individuals with cLBP, implemented 3 different IAF calculations, and separated cLBP subjects based on psychological variables. We hypothesized that a higher fear movement in cLBP is associated with a lower IAF at rest. A total of 10 minutes of resting data were collected from 128 electroencephalography channels. Our results offer 3 novel contributions to the literature. First, the high fear group had a significantly lower peak alpha frequency. The high fear group also reported higher pain and higher disability. Second, we calculated individual alpha frequency using 3 different but established methods; the effect of fear on individual alpha frequency was robust across all methods. Third, fear of movement, pain intensity, and disability highly correlated with each other and together significantly predicted IAF. Our findings are the first to show that individuals with cLBP and high fear have a lower peak alpha frequency.
Collapse
Affiliation(s)
- Rachel L.M. Ho
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - Jinhan Park
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - Wei-en Wang
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - James S. Thomas
- Motor Control Lab, Department of Physical Therapy, Virginia Commonwealth University
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry, University of Florida
| | - Stephen A. Coombes
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| |
Collapse
|
6
|
Mazaheri A, Furman AJ, Seminowicz DA. Fear and pain slow the brain. Pain 2023; 165:00006396-990000000-00444. [PMID: 38112650 PMCID: PMC11045659 DOI: 10.1097/j.pain.0000000000003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| | - Andrew J. Furman
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Chowdhury NS, Skippen P, Si E, Chiang AKI, Millard SK, Furman AJ, Chen S, Schabrun SM, Seminowicz DA. The reliability of two prospective cortical biomarkers for pain: EEG peak alpha frequency and TMS corticomotor excitability. J Neurosci Methods 2023; 385:109766. [PMID: 36495945 PMCID: PMC9848447 DOI: 10.1016/j.jneumeth.2022.109766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many pain biomarkers fail to move from discovery to clinical application, attributed to poor reliability and an inability to accurately classify at-risk individuals. Preliminary evidence has shown that high pain sensitivity is associated with slow peak alpha frequency (PAF), and depression of corticomotor excitability (CME), potentially due to impairments in ascending sensory and descending motor pathway signalling respectively NEW METHOD: The present study evaluated the reliability of PAF and CME responses during sustained pain. Specifically, we determined whether, over several days of pain, a) PAF remains stable and b) individuals show two stable and distinct CME responses: facilitation and depression. Participants were given an injection of nerve growth factor (NGF) into the right masseter muscle on Day 0 and Day 2, inducing sustained pain. Electroencephalography (EEG) to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on Day 0, Day 2 and Day 5. RESULTS Using a weighted peak estimate, PAF reliability (n = 75) was in the excellent range even without standard pre-processing and ∼2 min recording length. Using a single peak estimate, PAF reliability was in the moderate-good range. For CME (n = 74), 80% of participants showed facilitation or depression of CME beyond an optimal cut-off point, with the stability of these changes in the good range. COMPARISON WITH EXISTING METHODS No study has assessed the reliability of PAF or feasibility of classifying individuals as facilitators/depressors, in response to sustained pain. PAF was reliable even in the presence of pain. The use of a weighted peak estimate for PAF is recommended, as excellent test-retest reliability can be obtained even when using minimal pre-processing and ∼2 min recording. We also showed that 80% of individuals exhibit either facilitation or depression of CME, with these changes being stable across sessions. CONCLUSIONS Our study provides support for the reliability of PAF and CME as prospective cortical biomarkers. As such, our paper adds important methodological advances to the rapidly growing field of pain biomarkers.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia.
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Emily Si
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Alan K I Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Shuo Chen
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Physical Therapy, University of Western Ontario, London, Canada
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA; Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|
8
|
Mazaheri A, Seminowicz DA, Furman AJ. Peak alpha frequency as a candidate biomarker of pain sensitivity: the importance of distinguishing slow from slowing. Neuroimage 2022; 262:119560. [PMID: 35973563 DOI: 10.1016/j.neuroimage.2022.119560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 10/31/2022] Open
Abstract
The study by Valentini et al. (2022) observed that the peak alpha frequency (PAF) of participants became slower after they were exposed to painful, as well as non-painful but unpleasant stimuli. The authors interpreted this as a challenge to our previous studies which propose that the speed of resting PAF, independently of pain-induced changes to PAF, can be a reliable biomarker marker for gaging individual pain sensitivity. While investigations into the role that PAF plays in pain perception are timely, we have some concerns about the assumptions and methodology employed by Valentini et al. Moreover, we believe the authors here have also misrepresented some of our previous work. In the current commentary, we detail the critical differences between our respective studies, with the ultimate aim of guiding future investigations.
Collapse
Affiliation(s)
- Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK; Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK.
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Andrew J Furman
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Hooyman A, Garbin A, Fisher BE, Kutch JJ, Winstein CJ. Paired associative stimulation applied to the cortex can increase resting-state functional connectivity: A proof of principle study. Neurosci Lett 2022; 784:136753. [PMID: 35753613 PMCID: PMC10035603 DOI: 10.1016/j.neulet.2022.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION There is emerging evidence that high Beta coherence (hBc) between prefrontal and motor corticies, measured with resting-state electroencephalography (rs-EEG), can be an accurate predictor of motor skill learning and stroke recovery. However, it remains unknown whether and how intracortical connectivity may be influenced using neuromodulation. Therefore, a cortico-cortico PAS (ccPAS) paradigm may be used to increase resting-state intracortical connectivity (rs-IC) within a targeted neural circuit. PURPOSE Our purpose is to demonstrate proof of principle that ccPAS can be used to increase rs-IC between a prefrontal and motor cortical region. METHODS Eleven non-disabled adults were recruited (mean age 26.4, sd 5.6, 5 female). Each participant underwent a double baseline measurement, followed by a real and control ccPAS condition, counter-balanced for order. Control and ccPAS conditions were performed over electrodes of the right prefrontal and motor cortex. Both ccPAS conditions were identical apart from the inter-stimulus interval (i.e ISI 5 ms: real ccPAS and 500 ms: control ccPAS). Whole brain rs-EEG of high Beta coherence (hBc) was acquired before and after each ccPAS condition and then analyzed for changes in rs-IC along the targeted circuit. RESULTS Compared to ccPAS500 and baseline, ccPAS5 induced a significant increase in rs-IC, measured as coherence between electrodes over right prefrontal and motor cortex, (p <.05). CONCLUSION These findings demonstrate proof of principle that ccPAS with an STDP derived ISI, can effectively increase hBc along a targeted circuit.
Collapse
Affiliation(s)
- Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - Alexander Garbin
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Geriatric Research Education and Clinical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason J Kutch
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Carolee J Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|