1
|
Abou Assale T, Kuenzel T, Schink T, Shahraz A, Neumann H, Klaus C. 6'-sialyllactose ameliorates the ototoxic effects of the aminoglycoside antibiotic neomycin in susceptible mice. Front Immunol 2023; 14:1264060. [PMID: 38130726 PMCID: PMC10733791 DOI: 10.3389/fimmu.2023.1264060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Sialic acids are terminal sugars of the cellular glycocalyx and are highly abundant in the nervous tissue. Sialylation is sensed by the innate immune system and acts as an inhibitory immune checkpoint. Aminoglycoside antibiotics such as neomycin have been shown to activate tissue macrophages and induce ototoxicity. In this study, we investigated the systemic subcutaneous application of the human milk oligosaccharide 6'-sialyllactose (6SL) as a potential therapy for neomycin-induced ototoxicity in postnatal mice. Repeated systemic treatment of mice with 6SL ameliorated neomycin-induced hearing loss and attenuated neomycin-triggered macrophage activation in the cochlear spiral ganglion. In addition, 6SL reversed the neomycin-mediated increase in gene transcription of the pro-inflammatory cytokine interleukin-1β (Il-1b) and the apoptotic/inflammatory kinase Pik3cd in the inner ear. Interestingly, neomycin application also increased the transcription of desialylating enzyme neuraminidase 3 (Neu3) in the inner ear. In vitro, we confirmed that treatment with 6SL had anti-inflammatory, anti-phagocytic, and neuroprotective effects on cultured lipopolysaccharide-challenged human THP1-macrophages. Thus, our data demonstrated that treatment with 6SL has anti-inflammatory and protective effects against neomycin-mediated macrophage activation and ototoxicity.
Collapse
Affiliation(s)
- Tawfik Abou Assale
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Thomas Kuenzel
- Auditory Neurophysiology, Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Tamara Schink
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Anahita Shahraz
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Harald Neumann
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Christine Klaus
- Neural Regeneration, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Shimada MD, Noda M, Koshu R, Takaso Y, Sugimoto H, Ito M, Yoshizaki T, Hori O. Macrophage depletion attenuates degeneration of spiral ganglion neurons in kanamycin-induced unilateral hearing loss model. Sci Rep 2023; 13:16741. [PMID: 37798459 PMCID: PMC10555992 DOI: 10.1038/s41598-023-43927-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023] Open
Abstract
Pathological conditions in cochlea, such as ototoxicity, acoustic trauma, and age-related cochlear degeneration, induce cell death in the organ of Corti and degeneration of the spiral ganglion neurons (SGNs). Although macrophages play an essential role after cochlear injury, its role in the SGNs is limitedly understood. We analyzed the status of macrophage activation and neuronal damage in the spiral ganglion after kanamycin-induced unilateral hearing loss in mice. The number of ionized calcium-binding adapter molecule 1 (Iba1)-positive macrophages increased 3 days after unilateral kanamycin injection. Macrophages showed larger cell bodies, suggesting activation status. Interestingly, the number of activating transcription factor 3 (ATF3)-positive-neurons, an indicator of early neuronal damage, also increased at the same timing. In the later stages, the number of macrophages decreased, and the cell bodies became smaller, although the number of neuronal deaths increased. To understand their role in neuronal damage, macrophages were depleted via intraperitoneal injection of clodronate liposome 24 h after kanamycin injection. Macrophage depletion decreased the number of ATF3-positive neurons at day 3 and neuronal death at day 28 in the spiral ganglion following kanamycin injection. Our results suggest that suppression of inflammation by clodronate at early timing can protect spiral ganglion damage following cochlear insult.
Collapse
Affiliation(s)
- Mari Dias Shimada
- Department of Otolaryngology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masao Noda
- Department of Pediatric Otolaryngology, Jichi Children's Medical Center Tochigi, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ryota Koshu
- Department of Otolaryngology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yuji Takaso
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Ito
- Department of Pediatric Otolaryngology, Jichi Children's Medical Center Tochigi, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tomokazu Yoshizaki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
3
|
Wang X, Zhou Z, Yu C, He K, Sun L, Kou Y, Zhang M, Zhang Z, Luo P, Wen L, Chen G. A prestin-targeting peptide-guided drug delivery system rearranging concentration gradient in the inner ear: An improved strategy against hearing loss. Eur J Pharm Sci 2023; 187:106490. [PMID: 37295658 DOI: 10.1016/j.ejps.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Hearing loss is mainly due to outer hair cell (OHC) damage in three cochlear turns. Local administration via the round window membrane (RWM) has considerable otological clinical potential in bypassing the blood-labyrinth barrier. However, insufficient drug distribution in the apical and middle cochlear turns results in unsatisfactory efficacy. We functionalized poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) with targeting peptide A665, which specifically bound to prestin, a protein uniquely expressed in OHCs. The modification facilitated the cellular uptake and RWM permeability of NPs. Notably, the guide of A665 towards OHCs enabled more NPs perfusion in the apical and middle cochlear turns without decreasing accumulation in the basal cochlear turn. Subsequently, curcumin (CUR), an appealing anti-ototoxic drug, was encapsulated in NPs. In aminoglycoside-treated guinea pigs with the worst hearing level, CUR/A665-PLGA NPs, with superior performance to CUR/PLGA NPs, almost completely preserved the OHCs in three cochlear turns. The lack of increased low-frequencies hearing thresholds further confirmed that the delivery system with prestin affinity mediated cochlear distribution rearrangement. Good inner ear biocompatibility and little or no embryonic zebrafish toxicity were observed throughout the treatment. Overall, A665-PLGA NPs act as desirable tools with sufficient inner ear delivery for improved efficacy against severe hearing loss.
Collapse
Affiliation(s)
- Xinrui Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeming Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kerui He
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lifang Sun
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuwei Kou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd, Zhongshan 528437, China
| | - Zhifeng Zhang
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Cutri RM, Lin J, Nguyen NV, Shakya D, Shibata SB. Neomycin-Induced Deafness in Neonatal Mice. J Neurosci Methods 2023; 391:109852. [PMID: 37031766 DOI: 10.1016/j.jneumeth.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Hearing impairment is a rising public health issue, and current therapeutics fail to restore normal auditory sensation. Animal models are essential to a better understanding of the pathophysiology of deafness and developing therapeutics to restore hearing. NEW METHODS Wild-type CBA/CaJ neonatal mice P2-5 were used in this study. Neomycin suspension (500nl of 50 or 100mg/ml) was micro-injected into the endolymphatic space. Cochlear morphology was examined 3 and 7 days after injection; hair cell (HC) loss, supporting cell morphology, and neurite denervation pattern were assessed with whole-mounts. At 2 and 4 weeks post-injection, the spiral ganglion neuron (SGN) density was analyzed with cryostat sections. Audiometric responses were measured with auditory brain response (ABR) at 4 weeks. RESULTS Rapid and complete degeneration of the inner and outer HCs occurred as early as 3 days post-injection. Subsequently, time- and dose-dependent degeneration patterns were observed along the axis of the cochlear membranous labyrinth forming a flat epithelium. Likewise, the SGN histology demonstrated significant cell density reduction at 2 and 4 weeks. The ABR threshold measurements confirmed profound deafness at 4 weeks. COMPARISON WITH EXISTING METHODS Compared to previously described local and systemic aminoglycoside injections, this method provides a reliable, robust, and rapid deafening model with a single infusion of neomycin in neonatal mice. This model also allows for investigating the effects of inner ear damage during auditory maturation. CONCLUSIONS A single injection of neomycin into the endolymphatic space induces robust HC loss and denervation in neonatal mice.
Collapse
Affiliation(s)
- Raffaello M Cutri
- Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Joshua Lin
- Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Nhi V Nguyen
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Dejan Shakya
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Seiji B Shibata
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
5
|
Sargsyan L, Swisher AR, Hetrick AP, Li H. Effects of Combined Gentamicin and Furosemide Treatment on Cochlear Macrophages. Int J Mol Sci 2022; 23:ijms23137343. [PMID: 35806348 PMCID: PMC9266920 DOI: 10.3390/ijms23137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Combining aminoglycosides and loop diuretics often serves as an effective ototoxic approach to deafen experimental animals. The treatment results in rapid hair cell loss with extended macrophage presence in the cochlea, creating a sterile inflammatory environment. Although the early recruitment of macrophages is typically neuroprotective, the delay in the resolution of macrophage activity can be a complication if the damaged cochlea is used as a model to study subsequent therapeutic strategies. Here, we applied a high dose combination of systemic gentamicin and furosemide in C57 BL/6 and CBA/CaJ mice and studied the ototoxic consequences in the cochlea, including hair cell survival, ribbon synaptic integrity, and macrophage activation up to 15-day posttreatment. The activity of macrophages in the basilar membrane was correlated to the severity of cochlear damage, particularly the hair cell damage. Comparatively, C57 BL/6 cochleae were more vulnerable to the ototoxic challenge with escalated macrophage activation. In addition, the ribbon synaptic deterioration was disproportionately limited when compared to the degree of outer hair cell loss in CBA/CaJ mice. The innate and differential otoprotection in CBA/CaJ mice appears to be associated with the rapid activation of cochlear macrophages and a certain level of synaptogenesis after the combined gentamicin and furosemide treatment.
Collapse
Affiliation(s)
- Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Austin R. Swisher
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Alisa P. Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
- Correspondence: or ; Tel.: +1-(909)-825-7084 (ext. 2816); Fax: +1-(909)-796-4508
| |
Collapse
|