1
|
Abstract
In the mammalian central nervous system, nerve-glia antigen 2 (NG2) glia are considered the fourth glial population in addition to astrocytes, oligodendrocytes and microglia. The fate of NG2 glia in vivo has been carefully studied in several transgenic mouse models using the Cre/loxP strategy. There is a clear agreement that NG2 glia mainly serve as progenitors for oligodendrocytes and a subpopulation of astrocytes mainly in the ventral forebrain, whereas the existence of a neurogenic potential of NG2 glia is lack of adequate evidence. This mini review summarizes the findings from recent studies regarding the fate of NG2 glia during development. We will highlight the age-and-region-dependent heterogeneity of the NG2 glia differentiation potential. We will also discuss putative reasons for inconsistent findings in various transgenic mouse lines of previous studies.
Collapse
Affiliation(s)
- Qilin Guo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
2
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
3
|
Thümmler K, Rom E, Zeis T, Lindner M, Brunner S, Cole JJ, Arseni D, Mücklisch S, Edgar JM, Schaeren-Wiemers N, Yayon A, Linington C. Polarizing receptor activation dissociates fibroblast growth factor 2 mediated inhibition of myelination from its neuroprotective potential. Acta Neuropathol Commun 2019; 7:212. [PMID: 31856924 PMCID: PMC6923900 DOI: 10.1186/s40478-019-0864-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling contributes to failure of remyelination in multiple sclerosis, but targeting this therapeutically is complicated by its functional pleiotropy. We now identify FGF2 as a factor up-regulated by astrocytes in active inflammatory lesions that disrupts myelination via FGF receptor 2 (FGFR2) mediated activation of Wingless (Wnt) signaling; pharmacological inhibition of Wnt being sufficient to abrogate inhibition of myelination by FGF2 in tissue culture. Using a novel FGFR1-selective agonist (F2 V2) generated by deleting the N-terminal 26 amino acids of FGF2 we demonstrate polarizing signal transduction to favor FGFR1 abrogates FGF mediated inhibition of myelination but retains its ability to induce expression of pro-myelinating and immunomodulatory factors that include Cd93, Lif, Il11, Hbegf, Cxcl1 and Timp1. Our data provide new insights into the mechanistic basis of remyelination failure in MS and identify selective activation of FGFR1 as a novel strategy to induce a neuroprotective signaling environment in multiple sclerosis and other neurological diseases.
Collapse
|
4
|
Multipotency and therapeutic potential of NG2 cells. Biochem Pharmacol 2017; 141:42-55. [DOI: 10.1016/j.bcp.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
5
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
6
|
Abstract
Oligodendrocyte precursor cells (OPCs) originate in the ventricular zones (VZs) of the brain and spinal cord and migrate throughout the developing central nervous system (CNS) before differentiating into myelinating oligodendrocytes (OLs). It is not known whether OPCs or OLs from different parts of the VZ are functionally distinct. OPCs persist in the postnatal CNS, where they continue to divide and generate myelinating OLs at a decreasing rate throughout adult life in rodents. Adult OPCs respond to injury or disease by accelerating their cell cycle and increasing production of OLs to replace lost myelin. They also form synapses with unmyelinated axons and respond to electrical activity in those axons by generating more OLs and myelin locally. This experience-dependent "adaptive" myelination is important in some forms of plasticity and learning, for example, motor learning. We review the control of OL lineage development, including OL population dynamics and adaptive myelination in the adult CNS.
Collapse
Affiliation(s)
- Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, WBSB 1001, Baltimore, Maryland 21205
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Azim K, Raineteau O, Butt AM. Intraventricular injection of FGF-2 promotes generation of oligodendrocyte-lineage cells in the postnatal and adult forebrain. Glia 2012; 60:1977-90. [PMID: 22951928 DOI: 10.1002/glia.22413] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 08/02/2012] [Indexed: 11/09/2022]
Abstract
FGF2 is considered a key factor in the generation of oligodendrocytes (OLs) derived from neural stem cells (NSCs) located within the subventricular zone (SVZ). Here, we have examined FGF2 signaling in the forebrain of postnatal and adult mice. Using qPCR of microdissected microdomains of the dorsal SVZ (dSVZ) and lateral SVZ (lSVZ), and prominin1-sorted NSCs purified from these microdomains, we show that transcripts for FGF receptor 1 (FGFR1) and FGFR2 are enriched in the dSVZ, from which OLs are largely derived, whereas FGFR3 are significantly enriched within prominen1-sorted NSC of the lSVZ, which mainly generate olfactory interneurons. We show that direct administration of FGF2 into the lateral ventricle increased the generation of oligodendrocyte progenitors (OPCs) throughout the SVZ, both within the dSVZ and ectopically in the lSVZ and ependymal wall of the SVZ. Furthermore, FGF2 stimulated proliferation of neural progenitors (NPs) and their differentiation into OPCs. The results indicate that FGF2 increased specification of OPCs, inducing NPs to follow an oligodendrocyte developmental pathway. Notably, FGF2 did not block OPC differentiation and increased the number of oligodendrocytes in the periventricular white matter (PVWM) and cortex. However, FGF2 markedly disrupted myelination in the PVWM. A key finding was that FGF2 had equivalent actions on the generation of OPCs and myelin disruption in postnatal and adult mice. This study demonstrates a central role for FGF2 in promoting oligodendrocyte generation in the developing and adult brain.
Collapse
Affiliation(s)
- Kasum Azim
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael's Building, Portsmouth, United Kingdom
| | | | | |
Collapse
|
8
|
Rottlaender A, Villwock H, Addicks K, Kuerten S. Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immunology 2011; 133:370-8. [PMID: 21564095 DOI: 10.1111/j.1365-2567.2011.03450.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The role of fibroblast growth factor-2 (FGF-2) in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis is discussed. This study is the first to use FGF-2(-/-) mice to further address the involvement of FGF-2 in the disease process. We demonstrate that immunization with myelin oligodendrocyte glycoprotein peptide 35-55 induces more severe experimental autoimmune encephalomyelitis in FGF-2(-/-) mice compared with FGF-2(+/+) mice. The antigen-specific cytokine response to myelin oligodendrocyte glycoprotein peptide and the degree of central nervous system inflammation was similar in both groups. However, FGF-2(-/-) mice displayed increased infiltration of CD8(+) T cells and macrophages/microglia. In addition, nerve fibre degeneration and axonal loss were augmented, whereas the extent of remyelination in central nervous system lesions was reduced. FGF-2 has been associated with the induction of demyelination and the inhibition of myelin production by oligodendrocytes. Our study supports the opposing notion that FGF-2 can also assert a neuroprotective function. This may be particularly appealing when it comes to targeting the neurodegenerative aspect of multiple sclerosis.
Collapse
|
9
|
Azim K, Butt AM. GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 2011; 59:540-53. [PMID: 21319221 DOI: 10.1002/glia.21122] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/15/2010] [Indexed: 01/08/2023]
Abstract
Glycogen synthase kinase 3β (GSK3β) is an essential integrating molecule for multiple proliferation and differentiation signals that regulate cell fate. Here, we have examined the effects of inhibiting GSK3β on the development of oligodendrocytes (OLs) from their oligodendrocyte precursors (OP) in vivo by injection into the lateral ventricle of postnatal mice and ex vivo in organotypic cultures of isolated intact rodent optic nerve. Our results show that a range of GSK3β inhibitors (ARA-014418, lithium, indirubin, and L803-mt) increase OPs and OLs and promote myelination. Inhibition of GSK3β stimulates OP proliferation and is prosurvival and antiapoptotic. The effects of GSK3β inhibition in OPs is via the canonical Wnt signaling pathway by stimulating nuclear translocation of β-catenin. However, direct comparison of the effects of Wnt3a and GSK3β inhibition in optic nerves shows that they have opposing actions on OLs, whereby GSK3β inhibition strikingly increases OL differentiation, whereas Wnt3a inhibits OL differentiation. Notably, GSK3β inhibition overrides the negative effects of Wnt3a on OLs, indicating novel GSK3β signaling mechanisms that negatively regulate OL differentiation. We identify that two mechanisms of GSK3β inhibition are to stimulate cAMP response element binding (CREB) and decrease Notch1 signaling, which positively and negatively regulate OL differentiation and myelination, respectively. A key finding is that GSK3β inhibition has equivalent effects in the adult and stimulates the regeneration of OLs and remyelination following chemically induced demyelination. This study identifies GSK3β as a profound negative regulator of OL differentiation that contributes to inefficient regeneration of OLs and myelin repair in demyelination.
Collapse
Affiliation(s)
- Kasum Azim
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | | |
Collapse
|
10
|
Fumagalli F, Molteni R, Calabrese F, Maj PF, Racagni G, Riva MA. Neurotrophic factors in neurodegenerative disorders : potential for therapy. CNS Drugs 2009; 22:1005-19. [PMID: 18998739 DOI: 10.2165/0023210-200822120-00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Finding an effective therapy to treat chronic neurodegenerative disorders still represents an unmet and elusive goal, mainly because so many pathogenic variables come into play in these diseases. Recent emphasis has been placed on the role of neurotrophic factors in the aetiology of such disorders because of their role in the survival of different cell phenotypes under various adverse conditions, including neurodegeneration.This review summarizes the current status and the efforts to treat neurodegenerative disorders by the exogenous administration of neurotrophic factors in an attempt to replenish trophic supply, the paucity of which may contribute to the development of the illness. Although promising results have been seen in animal models, this approach still meets disparate and often insurmountable problems in clinical settings, presumably related to the unique nature of the human being.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Department of Pharmacological Sciences, Center of Neuropharmacology, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Sarchielli P, Di Filippo M, Ercolani MV, Chiasserini D, Mattioni A, Bonucci M, Tenaglia S, Eusebi P, Calabresi P. Fibroblast growth factor-2 levels are elevated in the cerebrospinal fluid of multiple sclerosis patients. Neurosci Lett 2008; 435:223-8. [DOI: 10.1016/j.neulet.2008.02.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/17/2008] [Accepted: 02/20/2008] [Indexed: 11/30/2022]
|
12
|
Ohya W, Funakoshi H, Kurosawa T, Nakamura T. Hepatocyte growth factor (HGF) promotes oligodendrocyte progenitor cell proliferation and inhibits its differentiation during postnatal development in the rat. Brain Res 2007; 1147:51-65. [PMID: 17382307 DOI: 10.1016/j.brainres.2007.02.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/06/2007] [Accepted: 02/05/2007] [Indexed: 12/25/2022]
Abstract
Hepatocyte growth factor (HGF) was initially cloned as a mitogen for hepatocytes and has been identified as a neurotrophic factor for a variety of neurons. However, few attempts have assessed the role of HGF in cells of oligodendrocyte lineage. The purpose of this study was to elucidate the role of HGF in such cells during development. Double immunostaining for either c-Met/HGF receptor or phospho-c-Met with either NG2 or RIP in rat striatum at postnatal day 3 (P3), P7, and P14 revealed that c-Met was phosphorylated on tyrosine residues and thereby activated in NG2(+) oligodendrocyte progenitor cells (OPCs) at P3-P14 and in RIP(+) oligodendrocytes at P14. Intrastriatal injections of recombinant human HGF at both P7 and P10 revealed that the relative ratio of BrdU(+)/NG2(+) cells per total number of NG2(+) cells increased, while BrdU(+)/MBP(+) oligodendrocyte numbers decreased. Western blot analysis showed a down-regulation of myelin basic protein (MBP) after HGF injection. Electron microscopy revealed that the numbers of myelinated nerve fibers decreased after HGF treatment. Furthermore, administration of anti-HGF IgG into the striatum increased the number of BrdU(+)/MBP(+) oligodendrocytes. These findings demonstrated that HGF increases proliferation of OPCs and attenuates their differentiation into myelinating oligodendrocytes, presumably by favoring neurite outgrowth that may be inhibited by the myelin inhibitory molecules on oligodendrocytes. Down-regulation of HGF mRNA in the striatum from P7 to P14, as revealed by quantitative real-time RT-PCR, may be favorable for OPC differentiation into myelinating oligodendrocytes. Our findings suggest that c-Met signaling, together with HGF regulation, plays an important role in developmental oligodendrogenesis.
Collapse
Affiliation(s)
- Wakana Ohya
- Division of Molecular Regenerative Medicine, Department of Biochemistry and Molecular Biology, Osaka University Graduate School of Medicine, B-7, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|