1
|
Al-Keilani MS, Almomani BA, Jaradat SA, Al-Sawalha NA, Qawasmeh MA. Alpha Calcitonin Gene-related Peptide, Neuropeptide Y, and Substance P as Biomarkers for Diagnosis and Disease Activity and Severity in Multiple Sclerosis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:512-524. [PMID: 37013432 DOI: 10.2174/1871527322666230403130540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Alpha calcitonin gene-related peptide (aCGRP), neuropeptide Y (NPY), and substance P (SP) are neuropeptides that have emerged recently as potent immunomodulatory factors with potential as novel biomarkers and therapeutic targets in multiple sclerosis (MS). OBJECTIVE The study aimed to detect serum levels of aCGRP, NPY, and SP in MS patients versus healthy controls and their association with disease activity and severity. METHODS Serum levels were measured in MS patients and age and sex-matched healthy controls using ELISA. RESULTS We included 67 MS patients: 61 relapsing-remitting MS (RR-MS) and 6 progressive MS (PR-MS), and 67 healthy controls. Serum NPY level was found to be lower in MS patients than in healthy controls (p < 0.001). Serum aCGRP level was higher in PR-MS compared to RR-MS (p = 0.007) and healthy controls (p = 0.001), and it positively correlated with EDSS (r = 0.270, p = 0.028). Serum NPY level was significantly higher in RR-MS and PR-MS than in healthy controls (p < 0.001 and p = 0.001, respectively), and it was lower in patients with mild or moderate/severe disease than in healthy controls (p < 0.001). Significant inverse correlations were found between SP level and MS disease duration (r = -0.279, p = 0.022) and duration of current DMT (r = -0.315, p = 0.042). CONCLUSION Lower serum levels of NPY were revealed in MS patients compared to healthy controls. Since serum levels of aCGRP are significantly associated with disease activity and severity, it is a potential disease progression marker.
Collapse
Affiliation(s)
- Maha S Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Basima A Almomani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Saied A Jaradat
- Department of Biotechnology and Genetic Engineering, College of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Majdi Al Qawasmeh
- Department of Neurology, College of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
2
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
3
|
Morelli AE, Sumpter TL, Rojas-Canales DM, Bandyopadhyay M, Chen Z, Tkacheva O, Shufesky WJ, Wallace CT, Watkins SC, Berger A, Paige CJ, Falo LD, Larregina AT. Neurokinin-1 Receptor Signaling Is Required for Efficient Ca 2+ Flux in T-Cell-Receptor-Activated T Cells. Cell Rep 2021; 30:3448-3465.e8. [PMID: 32160549 PMCID: PMC7169378 DOI: 10.1016/j.celrep.2020.02.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
Efficient Ca2+ flux induced during cognate T cell activation requires signaling the T cell receptor (TCR) and unidentified G-protein-coupled receptors (GPCRs). T cells express the neurokinin-1 receptor (NK1R), a GPCR that mediates Ca2+ flux in excitable and non-excitable cells. However, the role of the NK1R in TCR signaling remains unknown. We show that the NK1R and its agonists, the neuropeptides substance P and hemokinin-1, co-localize within the immune synapse during cognate activation of T cells. Simultaneous TCR and NK1R stimulation is necessary for efficient Ca2+ flux and Ca2+-dependent signaling that sustains the survival of activated T cells and helper 1 (Th1) and Th17 bias. In a model of contact dermatitis, mice with T cells deficient in NK1R or its agonists exhibit impaired cellular immunity, due to high mortality of activated T cells. We demonstrate an effect of the NK1R in T cells that is relevant for immunotherapies based on pro-inflammatory neuropeptides and its receptors. The neurokinin 1 receptor (NK1R) induces Ca2+ flux in excitable cells. Here, Morelli et al. show that NK1R signaling in T cells promotes optimal Ca2+ flux triggered by TCR stimulation, which is necessary to sustain T cell survival and the efficient Th1- and Th17-based immunity that is relevant for immunotherapies based on pro-inflammatory neuropeptides.
Collapse
Affiliation(s)
- Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA
| | - Tina L Sumpter
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | | | - Mohna Bandyopadhyay
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Zhizhao Chen
- Hubei Key Laboratory of Medical Technology on Transplantation, Transplant Center, Institute of Hepatobiliary Diseases, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Olga Tkacheva
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - William J Shufesky
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Cell Biology and Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA
| | - Alexandra Berger
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | | | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; The University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, PA, USA; The UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Adriana T Larregina
- Department of Immunology, University of Pittsburgh, School of Medicine Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA; The McGowan Center for Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Aspirin Administration Affects Neurochemical Characterization of Substance P-Like Immunoreactive (SP-LI) Nodose Ganglia Neurons Supplying the Porcine Stomach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1049179. [PMID: 32626731 PMCID: PMC7306837 DOI: 10.1155/2020/1049179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/02/2022]
Abstract
Background Acetylsalicylic acid (ASA) is a commonly used anti-inflammatory, antipyretic, and analgesic drug, which has many side effects on the gastric mucosal layer. Despite this, knowledge concerning the influence of ASA on neuronal cells supplying the stomach is very scanty. Methods This investigation was performed on ten immature gilts of the Large White Polish race divided into two groups (five animals in each): a control group and animals which were treated with ASA. The retrograde neuronal tracer Fast Blue (FB) was injected into the prepyloric region of the stomach in all animals. ASA was then given orally to the experimental (ASA) group of gilts from the seventh day after FB injection to the 27th day of the experiment. After this period, all animals were euthanized. Immediately after euthanasia, nodose ganglia (NG) were collected and subjected to a standard double-labelling immunofluorescence technique using antibodies directed toward substance P (SP) and other selected neuronal factors, such as galanin (GAL), neuronal isoform of nitric oxide synthase (nNOS), vasoactive intestinal polypeptide (VIP), and calcitonin gene-related peptide (CGRP). Key Results. The obtained results show that SP-LI neurons located in NG supplying the porcine stomach were also immunoreactive to all the above-mentioned neuronal factors. Moreover, ASA administration caused an increase in the degree of colocalization of SP with other neuronal active substances, and the most visible changes concerned the number of neurons simultaneously immunoreactive to SP and CGRP. Conclusions and Inferences. These observations indicate that the population of SP-LI neurons supplying the stomach is not homogeneous and may undergo changes after ASA administration. These changes are probably connected with inflammatory processes and/or neuroprotective reactions although their exact mechanisms remain unknown.
Collapse
|
5
|
Jiang W, Wang X, Wang W, Hua F, Zhang Z, Zhang Z, Xiang J, Yang X. Inhibition of NK1R attenuates LPS-induced microglial inflammation and consequent death of PC12 cells. Brain Res Bull 2020; 162:115-124. [PMID: 32540418 DOI: 10.1016/j.brainresbull.2020.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
Microglia, the resident immune cells in the central nervous system, play a critical role under physiological conditions, but they may be activated and exaggerate the pathological development of Parkinson's disease (PD). Recent reports have suggested that neurokinin 1 receptor (NK1R) is involved in various inflammatory diseases, including PD. However, whether neurokinin 1 (NK1) is involved in the activation of microglial cells remains unclear. In the present study, we found that (1) NK1R is located in microglial cells and upregulated in lipopolysaccharide (LPS)-activated BV2 microglia. Application of CP-99994, a selective antagonist of NK1R, inhibited the production of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), IL-6, inducible macrophage-type nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in activated BV2 cells. (2) NK1R antagonist suppressed the morphological changes in LPS-stimulated BV2. (3) Microglial inactivation by NK1R antagonist resulted in decreased microglial migration. (4) NK1R antagonist reduced nuclear translocation of nuclear factor kappa-B (NF-κB) and attenuated phosphorylation of mitogen-activated protein kinases (MAPKs) in LPS-stimulated BV2. (5) The cell death of PC12 induced by microglia-mediated neuroinflammation was reversed in a Transwell co-culture system by NK1R antagonist. Collectively, these results showed that inhibition of NK1R attenuates LPS-induced microglial inflammatory response and dopaminergic neurotoxicity, which may be due to the decreased MAPK/NF-κB signal pathway. Thus, NK1R may be a therapeutic target in neuroinflammation, especially in PD.
Collapse
Affiliation(s)
- Weifeng Jiang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Wei Wang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zunsheng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Xinxin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
6
|
Khorasani S, Boroumand N, Lavi Arab F, Hashemy SI. The immunomodulatory effects of tachykinins and their receptors. J Cell Biochem 2020; 121:3031-3041. [PMID: 32115751 DOI: 10.1002/jcb.29668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022]
Abstract
Tachykinins (TKs) are a family of neuropeptides mainly expressed by neuronal and non-neuronal cell types, especially immune cells. Expression of TKs receptors on immune cell surfaces, their involvement in immune-related disorders, and therefore, understanding their immunomodulatory roles have become of particular interest to researchers. In fact, the precise understanding of TKs intervention in the immune system would help to design novel therapeutic approaches for patients suffering from immune disorders. The present review summarizes studies on TKs function as modulators of the immune system by reviewing their roles in generation, activation, development, and migration of immune cells. Also, it discusses TKs involvement in three main cellular mechanisms including inflammation, apoptosis, and proliferation.
Collapse
Affiliation(s)
- Sahar Khorasani
- Ferdows Paramedical School, Birjand University of Medical Sciences, Birjand, Iran
| | - Nadia Boroumand
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Boziki M, Polyzos SA, Deretzi G, Kazakos E, Katsinelos P, Doulberis M, Kotronis G, Giartza-Taxidou E, Laskaridis L, Tzivras D, Vardaka E, Kountouras C, Grigoriadis N, Thomann R, Kountouras J. A potential impact of Helicobacter pylori-related galectin-3 in neurodegeneration. Neurochem Int 2017; 113:137-151. [PMID: 29246761 DOI: 10.1016/j.neuint.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/03/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Neurodegeneration represents a component of the central nervous system (CNS) diseases pathogenesis, either as a disability primary source in the frame of prototype neurodegenerative disorders, or as a secondary effect, following inflammation, hypoxia or neurotoxicity. Galectins are members of the lectin superfamily, a group of endogenous glycan-binding proteins, able to interact with glycosylated receptors expressed by several immune cell types. Glycan-lectin interactions play critical roles in the living systems by involving and mediating a variety of biologically important normal and pathological processes, including cell-cell signaling shaping cell communication, proliferation and migration, immune responses and fertilization, host-pathogen interactions and diseases such as neurodegenerative disorders and tumors. This review focuses in the role of Galectin-3 in shaping responses of the immune system against microbial agents, and concretely, Helicobacter pylori (Hp), thereby potentiating effect of the microbe in areas distant from the ordinary site of colonization, like the CNS. We hereby postulate that gastrointestinal Hp alterations in terms of immune cell functional phenotype, cytokine and chemokine secretion, may trigger systemic responses, thereby conferring implications for remote processes susceptible in immunity disequilibrium, namely, the CNS inflammation and/or neurodegeneration.
Collapse
Affiliation(s)
- Marina Boziki
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Georgia Deretzi
- Department of Neurology, Multiple Sclerosis Unit, Papageorgiou Hospital, Thessaloniki, Greece
| | - Evangelos Kazakos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Panagiotis Katsinelos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Michael Doulberis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Georgios Kotronis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Evaggelia Giartza-Taxidou
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Leonidas Laskaridis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitri Tzivras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Elisabeth Vardaka
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Constantinos Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| |
Collapse
|
8
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
9
|
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016; 73:4249-4264. [PMID: 27314883 PMCID: PMC5056132 DOI: 10.1007/s00018-016-2293-z] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Mohsen Tehrani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO 80309 USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, Inflammatory Bowel Disease Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
10
|
Martinez AN, Philipp MT. Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System. ACTA ACUST UNITED AC 2016; 1:29-36. [PMID: 27430034 DOI: 10.29245/2572.942x/2016/2.1020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review addresses the role that substance P (SP) and its preferred receptor neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, viral, parasitic, and neurodegenerative diseases of the central nervous system. The SP/NK1R complex is a key player in the interaction between the immune and nervous systems. A common effect of this interaction is inflammation. For this reason and because of the predominance in the human brain of the NK1R, its antagonists are attractive potential therapeutic agents. Preventing the deleterious effects of SP through the use of NK1R antagonists has been shown to be a promising therapeutic strategy, as these antagonists are selective, potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to clinical management of CNS inflammation.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Mario T Philipp
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA
| |
Collapse
|
11
|
Martinez AN, Ramesh G, Jacobs MB, Philipp MT. Antagonist of the neurokinin-1 receptor curbs neuroinflammation in ex vivo and in vitro models of Lyme neuroborreliosis. J Neuroinflammation 2015; 12:243. [PMID: 26714480 PMCID: PMC4696197 DOI: 10.1186/s12974-015-0453-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/05/2015] [Indexed: 12/31/2022] Open
Abstract
Background Lyme neuroborreliosis (LNB) can affect both the peripheral (PNS) and the central nervous systems (CNS); it is caused by the spirochete Borrelia burgdorferi. The neuropeptide substance P (SP) is an important mediator of both neuroinflammation and blood-brain barrier dysfunction, through its NK1 receptor. Increased levels of SP have been shown to correlate with cell death. The present study used both ex vivo and in vitro models of experimentation to determine if the inflammatory mediator production and concomitant cell death caused by exposure of neural tissues and cells to B. burgdorferi could be attenuated by treatment with a NK1 receptor antagonist. Methods We incubated normal rhesus frontal cortex tissue explants (CNS) and primary cultures of rhesus dorsal root ganglia cells (PNS) with live B. burgdorferi and tested the effectiveness of the NK1 receptor antagonist L703,606 in attenuating inflammatory immune responses and neuronal and glial damage. Culture supernatants and tissue lysates were subjected to multiplex ELISA to quantify immune mediators, while the cells were evaluated for apoptosis by the in situ TUNEL assay. In addition, we identified immune mediators and producer cells in tissue sections by immunofluorescence staining and confocal microscopy. Results Co-incubation of both CNS tissues and PNS cells with the NK1 receptor antagonist attenuated bacterially induced increases in inflammatory cytokine and chemokine production, particularly, IL-6, CXCL8, and CCL2, and reduced apoptosis levels. Confocal microscopy confirmed that neurons and glial cells are sources of these immune mediators. These results suggest that NK1R antagonist treatment is able to reduce downstream pro-inflammatory signaling, thereby indicating that its systemic administration may slow disease progression. Conclusions We propose that SP contributes to neurogenic inflammation in LNB, and provide data to suggest that an NK1 receptor antagonist may represent a novel neuroprotective therapy.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA.
| | - Geeta Ramesh
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA.
| | - Mary B Jacobs
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA.
| | - Mario T Philipp
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA. .,Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA.
| |
Collapse
|
12
|
Barkauskas DS, Dixon Dorand R, Myers JT, Evans TA, Barkauskas KJ, Askew D, Purgert R, Huang AY. Focal transient CNS vessel leak provides a tissue niche for sequential immune cell accumulation during the asymptomatic phase of EAE induction. Exp Neurol 2015; 266:74-85. [PMID: 25708987 DOI: 10.1016/j.expneurol.2015.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 11/24/2022]
Abstract
Peripheral immune cells are critical to the pathogenesis of neurodegenerative diseases including multiple sclerosis (MS) (Hendriks et al., 2005; Kasper and Shoemaker, 2010). However, the precise sequence of tissue events during the early asymptomatic induction phase of experimental autoimmune encephalomyelitis (EAE) pathogenesis remains poorly defined. Due to the spatial-temporal constrains of traditional methods used to study this disease, most studies had been performed in the spine during peak clinical disease; thus the debate continues as to whether tissue changes such as vessel disruption represent a cause or a byproduct of EAE pathophysiology in the cortex. Here, we provide dynamic, high-resolution information on the evolving structural and cellular processes within the gray matter of the mouse cortex during the first 12 asymptomatic days of EAE induction. We observed that transient focal vessel disruptions precede microglia activation, followed by infiltration of and directed interaction between circulating dendritic cells and T cells. Histamine antagonist minimizes but not completely ameliorates blood vessel leaks. Histamine H1 receptor blockade prevents early microglia function, resulting in subsequent reduction in immune cell accumulation, disease incidence and clinical severity.
Collapse
Affiliation(s)
- Deborah S Barkauskas
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - R Dixon Dorand
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jay T Myers
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Teresa A Evans
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kestutis J Barkauskas
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland, OH 44106, USA
| | - David Askew
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Robert Purgert
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alex Y Huang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Reciprocal Regulation of Substance P and IL-12/IL-23 and the Associated Cytokines, IFNγ/IL-17: A Perspective on the Relevance of This Interaction to Multiple Sclerosis. J Neuroimmune Pharmacol 2015; 10:457-67. [PMID: 25690155 PMCID: PMC4543419 DOI: 10.1007/s11481-015-9589-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/19/2015] [Indexed: 12/31/2022]
Abstract
The neuropeptide substance P (SP) exhibits cytokine-like properties and exerts different effects in autoimmune inflammation. Various immune cells express SP and its neurokinin-1 receptor (NK1R) isoforms. A role for SP has been demonstrated in a number of autoimmune conditions, including multiple sclerosis (MS). In this work, we studied the role of SP and NK1R in human immune cells with a focus on their relationship with IL-12/IL-23 family cytokines and the associated IFN-γ/IL-17. AIMS: (1) To determine the role of SP mediated effects on induction of various inflammatory cytokines in peripheral blood mononuclear cells (PBMC); (2) to investigate the expression of SP and its receptor in T cells and the effects of stimulation with IL-12 and IL-23. Quantitative real-time PCR, flow cytometry, ELISA, promoter studies on PBMC and primary T cells from healthy volunteers, and Jurkat cell line. Treatment with SP significantly increased the expression of IL-12/IL-23 subunit p40, IL-23 p19 and IL-12 p35 mRNA in human PBMC. Expression of NK1R and SP in T cells was upregulated by IL-23 but a trend was observed with IL-12. The IL-23 effect likely involves IL-17 production that additionally mediates IL-23 effects. Mutual interactions exist with SP enhancing the cytokines IL-23 and IL-12, and SP and NK1R expression being differentially but potentially synergistically regulated by these cytokines. These findings suggest a proinflammatory role for SP in autoimmune inflammation. We propose a model whereby immunocyte derived SP stimulates Th1 and Th17 autoreactive cells migrating to the central nervous system (CNS), enhances their crossing the blood brain barrier and perpetuates inflammation in the CNS by being released from damaged nerves and activating both resident glia and infiltrating immune cells. SP may be a therapeutic target in MS.
Collapse
|
14
|
Anderson G, Rodriguez M. Multiple sclerosis: the role of melatonin and N-acetylserotonin. Mult Scler Relat Disord 2014; 4:112-23. [PMID: 25787187 DOI: 10.1016/j.msard.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/06/2014] [Accepted: 12/09/2014] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an immune mediated disorder that is under intensive investigation in an attempt to improve on available treatments. Many of the changes occurring in MS, including increased mitochondrial dysfunction, pain reporting and depression may be partly mediated by increased indoleamine 2,3-dioxygenase, which drives tryptophan to the production of neuroregulatory tryptophan catabolites and away from serotonin, N-acetylserotonin and melatonin production. The consequences of decreased melatonin have classically been attributed to circadian changes following its release from the pineal gland. However, recent data shows that melatonin may be produced by all mitochondria containing cells to some degree, including astrocytes and immune cells, thereby providing another important MS treatment target. As well as being a powerful antioxidant, anti-inflammatory and antinociceptive, melatonin improves mitochondrial functioning, partly via increased oxidative phosphorylation. Melatonin also inhibits demyelination and increases remyelination, suggesting that its local regulation in white matter astrocytes by serotonin availability and apolipoprotein E4, among other potential factors, will be important in the etiology, course and treatment of MS. Here we review the role of local melatonin and its precursors, N-acetylserotonin and serotonin, in MS.
Collapse
|
15
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
16
|
Khan N, Smith MT. Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 2014; 22:1-22. [PMID: 24234347 PMCID: PMC3933737 DOI: 10.1007/s10787-013-0195-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 01/05/2023]
Abstract
In patients with multiple sclerosis (MS), pain is a frequent and disabling symptom. The prevalence is in the range 29-86 % depending upon the assessment protocols utilised and the definition of pain applied. Neuropathic pain that develops secondary to demyelination, neuroinflammation and axonal damage in the central nervous system is the most distressing and difficult type of pain to treat. Although dysaesthetic extremity pain, L'hermitte's sign and trigeminal neuralgia are the most common neuropathic pain conditions reported by patients with MS, research directed at gaining insight into the complex mechanisms underpinning the pathobiology of MS-associated neuropathic pain is in its relative infancy. By contrast, there is a wealth of knowledge on the neurobiology of neuropathic pain induced by peripheral nerve injury. To date, the majority of research in the MS field has used rodent models of experimental autoimmune encephalomyelitis (EAE) as these models have many clinical and neuropathological features in common with those observed in patients with MS. However, it is only relatively recently that EAE-rodents have been utilised to investigate the mechanisms contributing to the development and maintenance of MS-associated central neuropathic pain. Importantly, EAE-rodent models exhibit pro-nociceptive behaviours predominantly in the lower extremities (tail and hindlimbs) as seen clinically in patients with MS-neuropathic pain. Herein, we review research to date on the pathophysiological mechanisms underpinning MS-associated neuropathic pain as well as the pharmacological management of this condition. We also identify knowledge gaps to guide future research in this important field.
Collapse
Affiliation(s)
- Nemat Khan
- Centre for Integrated Preclinical Drug Development and School of Pharmacy, The University of Queensland, Level 3, Steele Building, St. Lucia Campus, Brisbane, QLD 4072 Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development and School of Pharmacy, The University of Queensland, Level 3, Steele Building, St. Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|
17
|
Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol 2013; 2013:705232. [PMID: 24382974 PMCID: PMC3870621 DOI: 10.1155/2013/705232] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/03/2022]
Abstract
Currently, it is generally accepted that multiple sclerosis (MS) is a complex multifactorial disease involving genetic and environmental factors affecting the autoreactive immune responses that lead to damage of myelin. In this respect, intrinsic or extrinsic factors such as emotional, psychological, traumatic, or inflammatory stress as well as a variety of other lifestyle interventions can influence the neuroendocrine system. On its turn, it has been demonstrated that the neuroendocrine system has immunomodulatory potential. Moreover, the neuroendocrine and immune systems communicate bidirectionally via shared receptors and shared messenger molecules, variously called hormones, neurotransmitters, or cytokines. Discrepancies at any level can therefore lead to changes in susceptibility and to severity of several autoimmune and inflammatory diseases. Here we provide an overview of the complex system of crosstalk between the neuroendocrine and immune system as well as reported dysfunctions involved in the pathogenesis of autoimmunity, including MS. Finally, possible strategies to intervene with the neuroendocrine-immune system for MS patient management will be discussed. Ultimately, a better understanding of the interactions between the neuroendocrine system and the immune system can open up new therapeutic approaches for the treatment of MS as well as other autoimmune diseases.
Collapse
|
18
|
Du C, Xie X. G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 2012; 22:1108-28. [PMID: 22664908 DOI: 10.1038/cr.2012.87] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spectrum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS in the near future.
Collapse
Affiliation(s)
- Changsheng Du
- Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | |
Collapse
|
19
|
Kitamura H, Kobayashi M, Wakita D, Nishimura T. Neuropeptide signaling activates dendritic cell-mediated type 1 immune responses through neurokinin-2 receptor. THE JOURNAL OF IMMUNOLOGY 2012; 188:4200-8. [PMID: 22474018 DOI: 10.4049/jimmunol.1102521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurokinin A (NKA), a neurotransmitter distributed in the central and peripheral nervous system, strictly controls vital responses, such as airway contraction, by intracellular signaling through neurokinin-2 receptor (NK2R). However, the function of NKA-NK2R signaling on involvement in immune responses is less-well defined. We demonstrate that NK2R-mediated neuropeptide signaling activates dendritic cell (DC)-mediated type 1 immune responses. IFN-γ stimulation significantly induced NK2R mRNA and remarkably enhanced surface protein expression levels of bone marrow-derived DCs. In addition, the DC-mediated NKA production level was significantly elevated after IFN-γ stimulation in vivo and in vitro. We found that NKA treatment induced type 1 IFN mRNA expressions in DCs. Transduction of NK2R into DCs augmented the expression level of surface MHC class II and promoted Ag-specific IL-2 production by CD4(+) T cells after NKA stimulation. Furthermore, blockade of NK2R by an antagonist significantly suppressed IFN-γ production by both CD4(+) T and CD8(+) T cells stimulated with the Ag-loaded DCs. Finally, we confirmed that stimulation with IFN-γ or TLR3 ligand (polyinosinic-polycytidylic acid) significantly induced both NK2R mRNA and surface protein expression of human PBMC-derived DCs, as well as enhanced human TAC1 mRNA, which encodes NKA and Substance P. Thus, these findings indicate that NK2R-dependent neuropeptide signaling regulates Ag-specific T cell responses via activation of DC function, suggesting that the NKA-NK2R cascade would be a promising target in chronic inflammation caused by excessive type 1-dominant immunity.
Collapse
Affiliation(s)
- Hidemitsu Kitamura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
20
|
Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2012; 164:1079-106. [PMID: 21371012 DOI: 10.1111/j.1476-5381.2011.01302.x] [Citation(s) in RCA: 1049] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
21
|
Mostafa GA, Al-Ayadhi LY. The possible link between the elevated serum levels of neurokinin A and anti-ribosomal P protein antibodies in children with autism. J Neuroinflammation 2011; 8:180. [PMID: 22189180 PMCID: PMC3261830 DOI: 10.1186/1742-2094-8-180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 12/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurogenic inflammation is orchestrated by a large number of neuropeptides. Tachykinins (substance P, neurokinin A and neurokinin B) are pro-inflammatory neuropeptides that may play an important role in some autoimmune neuroinflammatory diseases. Autoimmunity may have a role in the pathogenesis of autism in some patients. We are the first to measure serum neurokinin A levels in autistic children. The relationship between serum levels of neurokinin A and anti-ribosomal P protein antibodies was also studied. METHODS Serum neurokinin A and anti-ribosomal P protein antibodies were measured in 70 autistic children in comparison to 48 healthy-matched children. RESULTS Autistic children had significantly higher serum neurokinin A levels than healthy controls (P < 0.001). Children with severe autism had significantly higher serum neurokinin A levels than patients with mild to moderate autism (P < 0.001). Increased serum levels of neurokinin A and anti-ribosomal P protein antibodies were found in 57.1% and 44.3%, respectively of autistic children. There was significant positive correlations between serum levels of neurokinin A and anti-ribosomal P protein antibodies (P = 0.004). CONCLUSIONS Serum neurokinin A levels were elevated in some autistic children and they were significantly correlated to the severity of autism and to serum levels of anti-ribosomal P protein antibodies. However, this is an initial report that warrants further research to determine the pathogenic role of neurokinin A and its possible link to autoimmunity in autism. The therapeutic role of tachykinin receptor antagonists, a potential new class of anti-inflammatory medications, should also be studied in autism.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
22
|
Douglas SD, Leeman SE. Neurokinin-1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann N Y Acad Sci 2010; 1217:83-95. [PMID: 21091716 DOI: 10.1111/j.1749-6632.2010.05826.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The G protein-coupled receptor (GPCR), neurokinin-1 receptor (NK1R), and its preferred ligand, substance P (SP), are reviewed in relationship to the immune system and selected infections. NK1R and SP are ubiquitous throughout the animal kingdom. This important pathway has unique functions in numerous cells and tissues. The interaction of SP with its preferred receptor, NK1R, leads to the activation of nuclear factor-kappa B (NF-κB) and proinflammatory cytokines. NK1R has two isoforms, both a full-length and a truncated form. These isoforms have different functional significances and differ in cell signaling capability. The proinflammatory signals modulated by SP are important in bacterial, viral, fungal, and parasitic diseases, as well as in immune system function. The SP-NK1R system is a major class 1, rhodopsin-like GPCR ligand-receptor interaction.
Collapse
Affiliation(s)
- Steven D Douglas
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
23
|
Deretzi G, Kountouras J, Grigoriadis N, Zavos C, Chatzigeorgiou S, Koutlas E, Tsiptsios I. From the "little brain" gastrointestinal infection to the "big brain" neuroinflammation: a proposed fast axonal transport pathway involved in multiple sclerosis. Med Hypotheses 2009; 73:781-7. [PMID: 19467574 DOI: 10.1016/j.mehy.2009.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 04/04/2009] [Accepted: 04/08/2009] [Indexed: 12/14/2022]
Abstract
The human central nervous system (CNS) is targeted by different pathogens which, apart from pathogens' intranasal inoculation or trafficking into the brain through infected blood cells, may use a distinct pathway to bypass the blood-brain barrier by using the gastrointestinal tract (GIT) retrograde axonal transport through sensory or motor fibres. The recent findings regarding the enteric nervous system (often called the "little brain") similarities with CNS and GIT axonal transport of infections resulting in CNS neuroinflammation are mainly reviewed in this article. We herein propose that the GIT is the vulnerable area through which pathogens (such as Helicobacter pylori) may influence the brain and induce multiple sclerosis pathologies, mainly via the fast axonal transport by the afferent neurones connecting the GIT to brain.
Collapse
Affiliation(s)
- Georgia Deretzi
- Department of Neurology, Papageorgiou Regional General Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
24
|
Menge T, Weber MS, Hemmer B, Kieseier BC, von Büdingen HC, Warnke C, Zamvil SS, Boster A, Khan O, Hartung HP, Stüve O. Disease-modifying agents for multiple sclerosis: recent advances and future prospects. Drugs 2009; 68:2445-68. [PMID: 19016573 DOI: 10.2165/0003495-200868170-00004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the CNS. Currently, six medications are approved for immunmodulatory and immunosuppressive treatment of the relapsing disease course and secondary-progressive MS. In the first part of this review, the pathogenesis of MS and its current treatment options are discussed. During the last decade, our understanding of autoimmunity and the pathogenesis of MS has advanced substantially. This has led to the development of a number of compounds, several of which are currently undergoing clinical testing in phase II and III studies. While current treatment options are only available for parenteral administration, several oral compounds are now in clinical trials, including the immunosuppressive agents cladribine and laquinimod. A novel mode of action has been described for fingolimod, another orally available agent, which inhibits egress of activated lymphocytes from draining lymph nodes. Dimethylfumarate exhibits immunomodulatory as well as immunosuppressive activity when given orally. All of these compounds have successfully shown efficacy, at least in regards to the surrogate marker contrast-enhancing lesions on magnetic resonance imaging. Another class of agents that is highlighted in this review are biological agents, namely monoclonal antibodies (mAb) and recombinant fusion proteins. The humanized mAb daclizumab inhibits T-lymphocyte activation via blockade of the interleukin-2 receptor. Alemtuzumab and rituximab deplete leukocytes and B cells, respectively; the fusion protein atacicept inhibits specific B-cell growth factors resulting in reductions in B-cells and plasma cells. These compounds are currently being tested in phase II and III studies in patients with relapsing MS. The concept of neuro-protection and -regeneration has not advanced to a level where specific compounds have entered clinical testing. However, several agents approved for conditions other than MS are highlighted. Finally, with the advent of these highly potent novel therapies, rare, but potentially serious adverse effects have been noted, namely infections and malignancies. These are critically reviewed and put into perspective.
Collapse
Affiliation(s)
- Til Menge
- Department of Neurology, Heinrich Heine-University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Proinflammatory tachykinins that signal through the neurokinin 1 receptor promote survival of dendritic cells and potent cellular immunity. Blood 2008; 113:3017-26. [PMID: 18987361 DOI: 10.1182/blood-2008-06-163121] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dendritic cells (DCs) are the preferred targets for immunotherapy protocols focused on stimulation of cellular immune responses. However, regardless of initial promising results, ex vivo generated DCs do not always promote immune-stimulatory responses. The outcome of DC-dependent immunity is regulated by proinflammatory cytokines and neuropeptides. Proinflammatory neuropeptides of the tachykinin family, including substance P (SP) and hemokinin-1 (HK-1), bind the neurokinin 1 receptor (NK1R) and promote stimulatory immune responses. Nevertheless, the ability of pro-inflammatory tachykinins to affect the immune functions of DCs remains elusive. In the present work, we demonstrate that mouse bone marrow-derived DCs (BMDCs) generated in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), express functional NK1R. Signaling via NK1R with SP, HK-1, or the synthetic agonist [Sar(9)Met(O(2))(11)]-SP rescues DCs from apoptosis induced by deprivation of GM-CSF and IL-4. Mechanistic analysis demonstrates that NK1R agonistic binding promotes DC survival via PI3K-Akt signaling cascade. In adoptive transfer experiments, NK1R-signaled BMDCs loaded with Ag exhibit increased longevity in draining lymph nodes, resulting in enhanced and prolonged effector cellular immunity. Our results contribute to the understanding of the interactions between the immune and nervous systems that control DC function and present a novel approach for ex vivo-generation of potent immune-stimulatory DCs.
Collapse
|
26
|
Chauhan VS, Sterka DG, Gray DL, Bost KL, Marriott I. Neurogenic exacerbation of microglial and astrocyte responses to Neisseria meningitidis and Borrelia burgdorferi. THE JOURNAL OF IMMUNOLOGY 2008; 180:8241-9. [PMID: 18523290 DOI: 10.4049/jimmunol.180.12.8241] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although glial cells are recognized for their roles in maintaining neuronal function, there is growing appreciation of the ability of resident CNS cells to initiate and/or augment inflammation following trauma or infection. The tachykinin, substance P (SP), is well known to augment inflammatory responses at peripheral sites and its presence throughout the CNS raises the possibility that this neuropeptide might serve a similar function within the brain. In support of this hypothesis, we have recently demonstrated the expression of high affinity receptors for SP (Neurokinin-1 (NK-1) receptors) on microglia and shown that this tachykinin can significantly elevate bacterially induced inflammatory prostanoid production by isolated cultures of these cells. In the present study, we demonstrate that endogenous SP/NK-1R interactions are an essential component in the initiation and/or progression of CNS inflammation in vivo following exposure to two clinically relevant bacterial CNS pathogens, Neisseria meningitidis and Borrelia burgdorferi. We show that in vivo elevations in inflammatory cytokine production and decreases in the production of an immunosuppressive cytokine are markedly attenuated in mice genetically deficient in the expression of the NK-1R or in mice treated with a specific NK-1R antagonist. Furthermore, we have used isolated cultures of microglia and astrocytes to demonstrate that SP can augment inflammatory cytokine production by these resident CNS cell types following exposure to either of these bacterial pathogens. Taken together, these studies indicate a potentially important role for neurogenic exacerbation of resident glial immune responses in CNS inflammatory diseases, such as bacterial meningitis.
Collapse
Affiliation(s)
- Vinita S Chauhan
- Department of Biology, University of North Carolina, Charlotte, NC 28223, USA
| | | | | | | | | |
Collapse
|
27
|
Cantalupo L, Cioni C, Annunziata P. Expression of preprotachykinin-A mRNA isoforms and substance P production in T lymphocytes of human healthy subjects. Neurosci Lett 2008; 434:191-4. [PMID: 18294774 DOI: 10.1016/j.neulet.2008.01.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 12/18/2007] [Accepted: 01/23/2008] [Indexed: 11/28/2022]
Abstract
The influence of sex and age on the expression pattern of preprotachykinin-A (PPT-A) mRNA isoforms encoding substance P and other tackykinins such as neurokinin A (NKA), neuropeptide K (NPK) and neuropeptide gamma (NPgamma) in human immunocompetent cells and the role of this pattern on SP production are unknown. To investigate these questions, we assessed PPT-A isoform expression and SP production in CD3+ lymphocytes of normal healthy subjects. There were no significant differences in PPT-A isoforms in relation to sex or age. The most frequently expressed isoforms were beta and gamma: after lymphocyte stimulation with phytohemagglutinin (PHA), there was a significant increase in their frequency (p<0.0001). Significantly higher SP levels were found in subjects expressing beta and gamma PPT-A than in those with beta PPT-A only (p=0.001). These findings provide evidence of a heterogeneous expression of PPT-A isoforms in CD3+ lymphocytes of normal healthy subjects.
Collapse
Affiliation(s)
- Loredana Cantalupo
- Department of Neurological and Behavioural Sciences, University of Siena, Siena, Italy
| | | | | |
Collapse
|
28
|
Ng SW, Zhang H, Hegde A, Bhatia M. Role of preprotachykinin-A gene products on multiple organ injury in LPS-induced endotoxemia. J Leukoc Biol 2007; 83:288-95. [PMID: 17998302 DOI: 10.1189/jlb.0807575] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endotoxemia is a life-threatening, inflammatory condition that involves multiple organ injury and dysfunction. Preprotachykinin-A (PPT-A) gene products, substance P (SP), and neurokinin-A have been shown to play an important role in neurogenic inflammation. To investigate the role of PPT-A gene products on multiple organ injury in LPS-induced endotoxemia, endotoxemia was induced by LPS administration (10 mg/kg, i.p.) in PPT-A gene-deficient mice (PPTA(-/-)) and the wild-type (WT) control mice (PPT-A+/+). I.p. administration of LPS to WT mice caused a significant increase in circulating levels of SP as well as in liver, lung, and kidney. PPT-A gene deletion significantly protected against liver, pulmonary, and renal injury following LPS-induced endotoxemia, as evidenced by tissue myeloperoxidase activities, plasma alanine aminotransferase, aspartate aminotransferase levels, and histological examination. Furthermore, PPT-A(-/-) mice had significantly attenuated chemokines, proinflammatory cytokines, and adhesion molecule levels in the liver, lung, and kidney. These results show that PPT-A gene products are critical proinflammatory mediators in endotoxemia and the associated multiple organ injury. In addition, the data suggest that deletion of the PPT-A gene protected mice against organ damage in endotoxemia by disruption in neutrophil recruitment.
Collapse
Affiliation(s)
- Siaw Wei Ng
- Cardiovascular Biology Research Group, Department of Pharmacology, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
29
|
Hemmer B, Hartung HP. Toward the development of rational therapies in multiple sclerosis: what is on the horizon? Ann Neurol 2007; 62:314-26. [DOI: 10.1002/ana.21289] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Lau HY, Bhatia M. Effect of CP-96,345 on the expression of adhesion molecules in acute pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1283-92. [PMID: 17218475 DOI: 10.1152/ajpgi.00429.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the effect of a specific neurokinin-1 receptor (NK1R) antagonist, CP-96,345, on the regulation of the expression of adhesion molecules ICAM-1, VCAM-1, E-selectin, and P-selectin as well as leukocyte recruitment during acute pancreatitis (AP). AP was induced in male Balb/C mice by 10 consecutive hourly intraperitoneal injections of caerulein. In the treatment groups, CP-96,345 was administered at 2.5 mg/kg ip either 30 min before or 1 h after the first caerulein injection. Animals were killed, and the lungs and pancreas were isolated for RNA extraction and RT-PCR or for immunohistochemical staining. mRNA expression of the four adhesion molecules was upregulated in the pancreas during AP. Treatment with CP-96,345 effectively reduced the mRNA expression of P-selectin and E-selectin but not ICAM-1 and VCAM-1. In the lung, ICAM-1, E-selectin, and P-selectin mRNA expression increased during AP. Antagonist treatment suppressed this elevation. Similar expression patterns were seen in the immunohistochemical stainings. Intravital microscopy of the pancreatic microcirculation revealed the effect of CP-96,345 on leukocyte recruitment. The present study provides important information on the relationship between NK1R activation and the regulation of adhesion molecules. Also, this study points to the differential regulation of inflammation in the pancreas and lung with AP.
Collapse
Affiliation(s)
- Hon Yen Lau
- Dept. of Pharmacology, Yong Loo Lin School of Medicine, National Univ. of Singapore, Bldg. MD2, 18 Medical Dr., Singapore 117597
| | | |
Collapse
|