1
|
Ozawa Y, Uzawa A, Onishi Y, Yasuda M, Kojima Y, Kuwabara S. Activation of the classical complement pathway in myasthenia gravis with acetylcholine receptor antibodies. Muscle Nerve 2023; 68:798-804. [PMID: 37705312 DOI: 10.1002/mus.27973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION/AIMS Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction (NMJ) of skeletal muscle. Complement activation is one of the mechanisms by which anti-acetylcholine receptor (anti-AChR) autoantibodies reduce synaptic transmission at the NMJ. In this study, we aimed to examine the activation of the complement pathways, including the classical pathway, as potential contributors to the pathogenesis of MG with anti-AChR antibodies. METHODS In this single-center, observational study of 45 patients with anti-AChR-antibody-positive generalized MG, serum concentrations of major components of the complement pathways, including C1q, C5, C5a, soluble C5b-9 (sC5b-9), Ba, and complement factor H, were measured using an enzyme-linked immunosorbent assay. A total of 25 patients with a non-inflammatory neurological disorder served as controls. In addition, the relationships of complement activation with clinical characteristics were examined. RESULTS The patients with MG exhibited lower serum levels of C5 (p = .0001) and higher serum levels of sC5b-9 (p = .004) compared with the control group. At about 6 months (range, 172-209 days) after the start of immunotherapy, serum levels of Ba were significantly higher than baseline levels (p = .002) and were associated with improvement in MG clinical scores. DISCUSSION Herein, we provide evidence for the activation of the classical complement pathway and its association with disease activity in anti-AChR-antibody-positive generalized MG.
Collapse
Affiliation(s)
- Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuta Kojima
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Lee JD, Woodruff TM. The emerging role of complement in neuromuscular disorders. Semin Immunopathol 2021; 43:817-828. [PMID: 34705082 DOI: 10.1007/s00281-021-00895-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
The complement cascade is a key arm of the immune system that protects the host from exogenous and endogenous toxic stimuli through its ability to potently regulate inflammation, phagocytosis, and cell lysis. Due to recent clinical trial successes and drug approvals for complement inhibitors, there is a resurgence in targeting complement as a therapeutic approach to prevent ongoing tissue destruction in several diseases. In particular, neuromuscular diseases are undergoing a recent focus, with demonstrated links between complement activation and disease pathology. This review aims to provide a comprehensive overview of complement activation and its role during the initiation and progression of neuromuscular disorders including myasthenia gravis, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy. We will review the preclinical and clinical evidence for complement in these diseases, with an emphasis on the complement-targeting drugs in clinical trials for these indications.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Howard JF. Myasthenia gravis: the role of complement at the neuromuscular junction. Ann N Y Acad Sci 2017; 1412:113-128. [PMID: 29266249 DOI: 10.1111/nyas.13522] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Generalized myasthenia gravis (gMG) is a rare autoimmune disorder characterized by skeletal muscle weakness caused by disrupted neurotransmission at the neuromuscular junction (NMJ). Approximately 74-88% of patients with gMG have acetylcholine receptor (AChR) autoantibodies. Complement plays an important role in innate and antibody-mediated immunity, and activation and amplification of complement results in the formation of membrane attack complexes (MACs), lipophilic proteins that damage cell membranes. The role of complement in gMG has been demonstrated in animal models and patients. Studies in animals lacking specific complement proteins have confirmed that MAC formation is required to induce experimental autoimmune MG (EAMG) and NMJ damage. Complement inhibition in EAMG models can prevent disease induction and reverse its progression. Patients with anti-AChR+ MG have autoantibodies and MACs present at NMJs. Damaged NMJs are associated with more severe disease, fewer AChRs, and MACs in synaptic debris. Current MG therapies do not target complement directly. Eculizumab is a humanized monoclonal antibody that inhibits cleavage of complement protein C5, preventing MAC formation. Eculizumab treatment improved symptoms compared with placebo in a phase II study in patients with refractory gMG. Direct complement inhibition could preserve NMJ physiology and muscle function in patients with anti-AChR+ gMG.
Collapse
Affiliation(s)
- James F Howard
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Li Y, Tu Z, Qian S, Fung JJ, Markowitz SD, Kusner LL, Kaminski HJ, Lu L, Lin F. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2127-34. [PMID: 25057008 DOI: 10.4049/jimmunol.1400857] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell-dependent and B cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)-specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro-activated B cells. Administering MDSCs into mice immunized with a T cell-independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Zhidan Tu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - John J Fung
- Department of Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Sanford D Markowitz
- Department of Hematology and Oncology, Case Western Reserve University, Cleveland, OH 44106
| | - Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037; and
| | - Henry J Kaminski
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037; and Department of Neurology, George Washington University, Washington, DC 20037
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Feng Lin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106;
| |
Collapse
|
5
|
Tüzün E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev 2013; 12:904-11. [DOI: 10.1016/j.autrev.2013.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/26/2022]
|
6
|
Syriga M, Mavroidis M. Complement system activation in cardiac and skeletal muscle pathology: friend or foe? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:207-18. [PMID: 23402029 DOI: 10.1007/978-1-4614-4118-2_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A major goal in current cardiology practice is to determine optimal strategies for minimizing myocardial necrosis and optimizing cardiac repair following an acute myocardial infarction. Temporally regulated activation and suppression of innate immunity may be critical for achieving this goal. Extensive experimental data in various animal models have indicated that inhibiting complement activation offers protection to cardiac tissue after ischemia/reperfusion. However, the results of clinical studies using complement inhibitors (mainly at the C5 level) in patients with acute myocardial infarction have largely been disappointing. In cases in which complement activation participates in the initial events of muscle cell destruction, as in autoimmune myocarditis or autoimmune muscle disorders, inhibition of complement activation is expected to prove a successful treatment. In other pathologic conditions in which complement is recruited by degenerating or dying muscle cells, as in ischemia, the ideal approach is probably to modulate rather than abruptly blunt complement activation. Beneficial effects of complement action with regard to waste disposal, recruitment of stem cells, regeneration, angiogenesis, and better utilization of energy sources under hypoxic conditions may also prove important for successful disease treatment. Patient outcome after myocardial infarction almost certainly depend upon the combined activation of several distinct but potentially interrelated signaling pathways, suggesting that a combination of treatments targeted to different pathways should be the therapy of choice, and modulation of complement could be one of them.
Collapse
Affiliation(s)
- Msaro Syriga
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | | |
Collapse
|
7
|
Baggi F, Antozzi C, Toscani C, Cordiglieri C. Acetylcholine Receptor-Induced Experimental Myasthenia Gravis: What Have We Learned from Animal Models After Three Decades? Arch Immunol Ther Exp (Warsz) 2011; 60:19-30. [DOI: 10.1007/s00005-011-0158-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/28/2011] [Indexed: 01/23/2023]
|
8
|
Tüzün E, Huda R, Christadoss P. Complement and cytokine based therapeutic strategies in myasthenia gravis. J Autoimmun 2011; 37:136-43. [PMID: 21636248 DOI: 10.1016/j.jaut.2011.05.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 01/17/2023]
Abstract
Myasthenia gravis (MG) is a T cell-dependent and antibody-mediated disease in which the target antigen is the skeletal muscle acetylcholine receptor (AChR). In the last few decades, several immunological factors involved in MG pathogenesis have been discovered mostly by studies utilizing the experimental autoimmune myasthenia gravis (EAMG) model. Nevertheless, MG patients are still treated with non-specific global immunosuppression that is associated with severe chronic side effects. Due to the high heterogeneity of AChR epitopes and antibody responses involved in MG pathogenesis, the specific treatment of MG symptoms have to be achieved by inhibiting the complement factors and cytokines involved in anti-AChR immunity. EAMG studies have clearly shown that inhibition of the classical and common complement pathways effectively and specifically diminish the neuromuscular junction destruction induced by anti-AChR antibodies. The inborn or acquired deficiencies of IL-6, TNF-α and TNF receptor functions are associated with the lowest EAMG incidences. Th17-type immunity has recently emerged as an important contributor of EAMG pathogenesis. Overall, these results suggest that inhibition of the complement cascade and the cytokine networks alone or in combination might aid in development of future treatment models that would reduce MG symptoms with highest efficacy and lowest side effect profile.
Collapse
Affiliation(s)
- Erdem Tüzün
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | |
Collapse
|
9
|
Qi H, Li J, Allman W, Saini SS, Tüzün E, Wu X, Estes DM, Christadoss P. Genetic deficiency of estrogen receptor alpha fails to influence experimental autoimmune myasthenia gravis pathogenesis. J Neuroimmunol 2011; 234:165-7. [DOI: 10.1016/j.jneuroim.2011.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/24/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|