1
|
Chen D, Zhao Z, Shi J, Li S, Xu X, Wu Z, Tang Y, Liu N, Zhou W, Ni C, Ma B, Wang J, Zhang J, Huang L, You Z, Zhang P, Tang Z. Harnessing the sensing and stimulation function of deep brain-machine interfaces: a new dawn for overcoming substance use disorders. Transl Psychiatry 2024; 14:440. [PMID: 39419976 PMCID: PMC11487193 DOI: 10.1038/s41398-024-03156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Substance use disorders (SUDs) imposes profound physical, psychological, and socioeconomic burdens on individuals, families, communities, and society as a whole, but the available treatment options remain limited. Deep brain-machine interfaces (DBMIs) provide an innovative approach by facilitating efficient interactions between external devices and deep brain structures, thereby enabling the meticulous monitoring and precise modulation of neural activity in these regions. This pioneering paradigm holds significant promise for revolutionizing the treatment landscape of addictive disorders. In this review, we carefully examine the potential of closed-loop DBMIs for addressing SUDs, with a specific emphasis on three fundamental aspects: addictive behaviors-related biomarkers, neuromodulation techniques, and control policies. Although direct empirical evidence is still somewhat limited, rapid advancements in cutting-edge technologies such as electrophysiological and neurochemical recordings, deep brain stimulation, optogenetics, microfluidics, and control theory offer fertile ground for exploring the transformative potential of closed-loop DBMIs for ameliorating symptoms and enhancing the overall well-being of individuals struggling with SUDs.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhixian Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Shi
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shengjie Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuojin Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhong Zhou
- Wuhan Global Sensor Technology Co., Ltd, Wuhan, Hubei, China
| | - Changmao Ni
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, Hubei, China
| | - Bo Ma
- Microsystems Technology Center, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junya Wang
- Microsystems Technology Center, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, China
| | - Li Huang
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, Hubei, China
| | - Zheng You
- Microsystems Technology Center, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
3
|
Chang R, Peng J, Chen Y, Liao H, Zhao S, Zou J, Tan S. Deep Brain Stimulation in Drug Addiction Treatment: Research Progress and Perspective. Front Psychiatry 2022; 13:858638. [PMID: 35463506 PMCID: PMC9022905 DOI: 10.3389/fpsyt.2022.858638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Drug addiction is a chronic psychiatric disorder characterized by compulsive drug-seeking and drug-using behavior, and a tremendous socioeconomic burden to society. Current pharmacological and psychosocial methods have shown limited treatment effects for substance abuse. Deep Brain Stimulation (DBS) is a novel treatment for psychiatric disease and has gradually gained popularity in the treatment of addiction. Addiction is characterized by neuroplastic changes in the nucleus accumbens (NAc), a key structure in the brain reward system, and DBS in this region has shown promising treatment effects. In this paper, the research progress on DBS for drug addiction has been reviewed. Specifically, we discuss the mechanism of NAc DBS for addiction treatment and summarize the results of clinical trials on DBS treatment for addiction to psychoactive substances such as nicotine, alcohol, cocaine, opioids and methamphetamine/amphetamine. In addition, the treatment effects of DBS in other brain regions, such as the substantia nigra pars reticulata (SNr) and insula are discussed.
Collapse
Affiliation(s)
- Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Jionghong Peng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Yunfan Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Hailin Liao
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Size Zhao
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
4
|
Kowalska M, Prendecki M, Piekut T, Kozubski W, Dorszewska J. Migraine: Calcium Channels and Glia. Int J Mol Sci 2021; 22:2688. [PMID: 33799975 PMCID: PMC7962070 DOI: 10.3390/ijms22052688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland;
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| |
Collapse
|
5
|
Autoimmune paraneoplastic syndromes associated to lung cancer: A systematic review of the literature: Part 5: Neurological auto-antibodies, discussion, flow chart, conclusions. Lung Cancer 2017; 111:164-175. [DOI: 10.1016/j.lungcan.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Ruelle L, Bentea G, Sideris S, El Koulali M, Holbrechts S, Lafitte JJ, Grigoriu B, Sculier C, Meert AP, Durieux V, Berghmans T, Sculier JP. Autoimmune paraneoplastic syndromes associated to lung cancer: A systematic review of the literature Part 4: Neurological paraneoplastic syndromes, involving the peripheral nervous system and the neuromuscular junction and muscles. Lung Cancer 2017; 111:150-163. [PMID: 28838388 DOI: 10.1016/j.lungcan.2017.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of new immune treatment in oncology and particularly for lung cancer may induce new complications, particularly activation or reactivation of auto-immune diseases. In this context, a systematic review on the auto-immune paraneoplastic syndromes that can complicate lung cancer appears useful. This article is the fourth of a series of five and deals mainly with neurological paraneoplastic syndromes involving the peripheral nervous system and the neuromuscular junction and muscles.
Collapse
Affiliation(s)
- Lucien Ruelle
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium
| | - Georgiana Bentea
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium
| | - Spyridon Sideris
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium
| | - Mohamed El Koulali
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium
| | | | | | - Bogdan Grigoriu
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium
| | - Claudine Sculier
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium
| | - Anne-Pascale Meert
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium; Laboratoire facultaire de Médecine factuelle (ULB), Belgium
| | - Valérie Durieux
- Laboratoire facultaire de Médecine factuelle (ULB), Belgium; Bibliothèque des Sciences de la Santé, Université libre de Bruxelles (ULB), Belgium
| | - Thierry Berghmans
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium; Laboratoire facultaire de Médecine factuelle (ULB), Belgium
| | - Jean-Paul Sculier
- Service des Soins Intensifs et Urgences Oncologiques & Thoracic Oncology Institut Jules Bordet, Centre des Tumeurs de l'Université Libre de Bruxelles (ULB), Belgium; Laboratoire facultaire de Médecine factuelle (ULB), Belgium.
| |
Collapse
|
7
|
Hotta S, Nakatani Y, Kambe T, Abe K, Masuda Y, Utsumomiya I, Taguchi K. Effects of IgG anti-GM1 monoclonal antibodies on neuromuscular transmission and calcium channel binding in rat neuromuscular junctions. Exp Ther Med 2015; 10:535-540. [PMID: 26622350 DOI: 10.3892/etm.2015.2575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 05/01/2015] [Indexed: 01/24/2023] Open
Abstract
Guillain-Barré syndrome is a type of acute inflammatory neuropathy that causes ataxia and is associated with the IgG anti-GM1 antibody. However, the pathogenic role of the IgG anti-GM1 antibody and calcium channels in neuromuscular junctions (NMJs) remains unclear. Thus, the aim of the present study was to investigate the effects of the IgG anti-GM1 monoclonal antibody (mAb) on spontaneous muscle action potentials (SMAPs), and the effects of calcium channel blockers, in a rat spinal cord-muscle co-culture system. In addition, the binding of IgG anti-GM1 mAb to calcium channels was investigated in the rat hemidiaphragm. The frequency of SMAPs in the innervated muscle cells was acutely inhibited by the IgG anti-GM1 mAb; however, this effect was blocked by the N-type calcium channel blocker, ω-conotoxin GVIA (30 nM). Furthermore, the P/Q-type calcium channel blocker, ω-agatoxin IVA (10 nM), was found to partially block the IgG anti-GM1 mAb-induced inhibitory effect in the spinal cord-muscle co-culture system. Immunohistochemical analysis of the rat hemidiaphragm indicated that IgG anti-GM1 mAb binding overlapped with anti-Cav2.2 (α1B) antibody binding in the nerve terminal. In addition, IgG anti-GM1 mAb binding partially overlapped with anti-Cav2.1 (α1A) antibody binding. Thus, the results demonstrated that the IgG anti-GM1 mAb binds to calcium channels in the nerve terminals of NMJs. Therefore, the inhibitory effect of IgG anti-GM1 mAb on SMAPs may involve N-type and P/Q-type calcium channels in motor nerve terminals at the NMJ.
Collapse
Affiliation(s)
- Sayako Hotta
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yoshihiko Nakatani
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Toshie Kambe
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kenji Abe
- Department of Pharmacology, School of Pharmaceutical Sciences, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Yutaka Masuda
- Laboratory of Clinical Pharmacy, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Iku Utsumomiya
- Department of Developmental Education, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kyoji Taguchi
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
8
|
van der Plas AA, Schilder JC, Marinus J, van Hilten JJ. An Explanatory Study Evaluating the Muscle Relaxant Effects of Intramuscular Magnesium Sulphate for Dystonia in Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2013; 14:1341-8. [DOI: 10.1016/j.jpain.2013.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 12/17/2022]
|
9
|
Tarr TB, Valdomir G, Liang M, Wipf P, Meriney SD. New calcium channel agonists as potential therapeutics in Lambert-Eaton myasthenic syndrome and other neuromuscular diseases. Ann N Y Acad Sci 2012; 1275:85-91. [DOI: 10.1111/nyas.12001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Liang M, Tarr TB, Bravo-Altamirano K, Valdomir G, Rensch G, Swanson L, DeStefino NR, Mazzarisi CM, Olszewski RA, Wilson GM, Meriney SD, Wipf P. Synthesis and biological evaluation of a selective N- and p/q-type calcium channel agonist. ACS Med Chem Lett 2012; 3:985-90. [PMID: 24936234 DOI: 10.1021/ml3002083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/01/2012] [Indexed: 12/18/2022] Open
Abstract
The acute effect of the potent cyclin-dependent kinase (cdk) inhibitor (R)-roscovitine on Ca(2+) channels inspired the development of structural analogues as a potential treatment for motor nerve terminal dysfunction. On the basis of a versatile chlorinated purine scaffold, we have synthesized ca. 20 derivatives and characterized their N-type Ca(2+) channel agonist action. Agents that showed strong agonist effects were also characterized in a kinase panel for their off-target effects. Among several novel compounds with diminished cdk activity, we identified a new lead structure with a 4-fold improved N-type Ca(2+) channel agonist effect and a 22-fold decreased cdk2 activity as compared to (R)-roscovitine. This compound was selective for agonist activity on N- and P/Q-type over L-type calcium channels.
Collapse
Affiliation(s)
- Mary Liang
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tyler B. Tarr
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Karla Bravo-Altamirano
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Guillermo Valdomir
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gabriel Rensch
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lauren Swanson
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicholas R. DeStefino
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Cara M. Mazzarisi
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rachel A. Olszewski
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gabriela Mustata Wilson
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen D. Meriney
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, §Department of Neuroscience and Center for Neuroscience, and ∥Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
|
12
|
Gilhus NE. Lambert-eaton myasthenic syndrome; pathogenesis, diagnosis, and therapy. Autoimmune Dis 2011; 2011:973808. [PMID: 21969911 PMCID: PMC3182560 DOI: 10.4061/2011/973808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/04/2011] [Indexed: 11/29/2022] Open
Abstract
Lambert-Eaton Myasthenic Syndrome (LEMS) is a rare disease with a well-characterized pathogenesis. In 50% of the patients, LEMS is a paraneoplastic manifestation and caused by a small cell lung carcinoma (SCLC). Both LEMS patients with SCLC and those without this tumour have in 85% of cases pathogenetic antibodies of very high LEMS specificity against voltage-gated calcium channels (VGCCs) in the cell membrane of the presynaptic motor nerve terminal. Better understanding of LEMS pathogenesis has lead to targeted symptomatic therapy aimed at the neuromuscular junction and to semispecific immuno-suppression. For SCLC LEMS, tumour therapy is essential.
Collapse
Affiliation(s)
- Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
13
|
P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons. J Neurosci 2010; 30:11858-69. [PMID: 20810905 DOI: 10.1523/jneurosci.2651-10.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical axons contain a diverse range of voltage-activated ion channels, including Ca(2+) currents. Interestingly, Ca(2+) channels are not only located at presynaptic terminals, but also in the axon initial segment (AIS), suggesting a potentially important role in the regulation of action potential generation and neuronal excitability. Here, using two-photon microscopy and whole-cell patch-clamp recording, we examined the properties and role of calcium channels located in the AIS and presynaptic terminals of ferret layer 5 prefrontal cortical pyramidal cells in vitro. Subthreshold depolarization of the soma resulted in an increase in baseline and spike-triggered calcium concentration in both the AIS and nearby synaptic terminals. The increase in baseline calcium concentration rose with depolarization and fell with hyperpolarization with a time constant of approximately 1 s and was blocked by removal of Ca(2+) from the bathing medium. The increases in calcium concentration at the AIS evoked by subthreshold or suprathreshold depolarization of the soma were blocked by the P/Q-channel antagonist omega-agatoxin IVA or the N-channel antagonist omega-conotoxin GVIA or both. The presence of these channels in the AIS pyramidal cells was confirmed with immunochemistry. Block of these channels slowed axonal action potential repolarization, apparently from reduction of the activation of a Ca(2+)-activated K(+) current, and increased neuronal excitability. These results demonstrate novel mechanisms by which calcium currents may control the electrophysiological properties of axonal spike generation and neurotransmitter release in the neocortex.
Collapse
|
14
|
Pellkofer HL, Armbruster L, Linke R, Schumm F, Voltz R. Managing non-paraneoplastic Lambert–Eaton myasthenic syndrome: Clinical characteristics in 25 German patients. J Neuroimmunol 2009; 217:90-4. [DOI: 10.1016/j.jneuroim.2009.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 09/01/2009] [Accepted: 09/25/2009] [Indexed: 11/25/2022]
|
15
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|