1
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
2
|
Abstract
The development of antidrug antibodies (ADAs) is a major problem in several recombinant protein therapies used in the treatment of multiple sclerosis (MS). The etiology of ADAs is multifaceted. The predisposition for a breakdown of immune tolerance is probably genetically determined, and many factors may contribute to the immunogenicity, including structural properties, formation of aggregates, and presence of contaminants and impurities from the industrial manufacturing process. ADAs may have a neutralizing capacity and can reduce or abrogate the bioactivity and therapeutic efficacy of the drug and cause safety issues. Interferon (IFN)-β was the first drug approved for the treatment of MS, and-although it is generally recognized that neutralizing antibodies (NAbs) appear and potentially have a negative effect on therapeutic efficacy-the use of routine measurements of NAbs and the interpretation of the presence of NAbs has been debated at length. NAbs appear after 9-18 months of therapy in up to 40% of patients treated with IFNβ, and the frequency and titers of NAbs depend on the IFNβ preparation. Although all pivotal clinical trials of approved IFNβ products in MS exhibited a detrimental effect of NAbs after prolonged therapy, some subsequent studies did not observe clinical effects from NAbs, which led to the claim that NAbs did not matter. However, it is now largely agreed that persistently high titers of NAbs indicate an abrogation of the biological response and, hence, an absence of therapeutic efficacy, and this observation should lead to a change of therapy. Low and medium titers are ambiguous, and treatment decisions should be guided by determination of in vivo messenger RNA myxovirus resistance protein A induction after IFNβ administration and clinical disease activity. During treatment with glatiramer acetate, ADAs occur frequently but do not appear to adversely affect treatment efficacy or result in adverse events. ADAs occur in approximately 5% of patients treated with natalizumab within 6 months of therapy, and persistent NAbs are associated with a lack of efficacy and acute infusion-related reactions and should instigate a change of therapy. When using the anti-CD20 monoclonal antibodies ocrelizumab and ofatumumab in the treatment of MS, it is not necessary to test for NAbs as these occur very infrequently. Alemtuzumab is immunogenic, but routine measurements of ADAs are not recommended as the antibodies in the pivotal 2-year trials at the population level did not influence lymphocyte depletion or repopulation, efficacy, or safety. However, in some individuals, NAbs led to poor lymphocyte depletion.
Collapse
|
3
|
Preliminary Results of the FASM Study, an On-Going Italian Active Pharmacovigilance Project. Pharmaceuticals (Basel) 2020; 13:ph13120466. [PMID: 33333889 PMCID: PMC7765255 DOI: 10.3390/ph13120466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM Disease-modifying therapies (DMTs) used in multiple sclerosis (MS) have distinct safety profiles. In this paper, we report preliminary results of an on-going pharmacovigilance project (the FASM study). RESULTS Neurologists working at involved multiple sclerosis centers collected 272 Individual Case Safety Reports (ICSRs). Adverse drug reactions (ADRs) mainly occurred in adult patients and in a higher percentage of women compared to men. No difference was found in ADRs distribution by seriousness. The outcome was reported as favorable in 61% of ICSRs. Out of 272 ICSRs, almost 53% reported dimethyl fumarate, fingolimod and IFN beta 1a as suspected. These medications were commonly associated to the occurrence of ADRs related hematological, gastrointestinal, general, infective or cancer disorders. The median time to event (days) was 177 for dimethyl fumarate, 1058 for fingolimod and 413 for IFN beta 1a. The median time to event for the remaining suspected drugs was 226. CONCLUSION We believe that our results, together with those that will be presented at the end of the study, may bring new knowledge concerning the safety profile of DMTs and their proper use. This will provide the opportunity to draw new recommendations both for neurologists and patients.
Collapse
|
4
|
Aharoni R, Eilam R, Schottlender N, Radomir L, Leistner-Segal S, Feferman T, Hirsch D, Sela M, Arnon R. Glatiramer acetate increases T- and B -regulatory cells and decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) in an animal model of multiple sclerosis. J Neuroimmunol 2020; 345:577281. [DOI: 10.1016/j.jneuroim.2020.577281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/21/2023]
|
5
|
Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O. Immunological Aspects of Approved MS Therapeutics. Front Immunol 2019; 10:1564. [PMID: 31354720 PMCID: PMC6637731 DOI: 10.3389/fimmu.2019.01564] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological immune-mediated disease leading to disability in young adults. The outcome of the disease is unpredictable, and over time, neurological disabilities accumulate. Interferon beta-1b was the first drug to be approved in the 1990s for relapsing-remitting MS to modulate the course of the disease. Over the past two decades, the treatment landscape has changed tremendously. Currently, more than a dozen drugs representing 1 substances with different mechanisms of action have been approved (interferon beta preparations, glatiramer acetate, fingolimod, siponimod, mitoxantrone, teriflunomide, dimethyl fumarate, cladribine, alemtuzumab, ocrelizumab, and natalizumab). Ocrelizumab was the first medication to be approved for primary progressive MS. The objective of this review is to present the modes of action of these drugs and their effects on the immunopathogenesis of MS. Each agent's clinical development and potential side effects are discussed.
Collapse
Affiliation(s)
- Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ron Milo
- Department of Neurology, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - May H. Han
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Sammita Satyanarayan
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
| | - Larissa Hauer
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Clemens Warnke
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Sarah Laurent
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Yinan Zhang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Medical Service Dallas, VA Medical Center, Dallas, TX, United States
| |
Collapse
|
6
|
A differential sex-specific pattern of IgG2 and IgG4 subclasses of anti-drug antibodies (ADAs) induced by glatiramer acetate in relapsing-remitting multiple sclerosis patients. Mult Scler Relat Disord 2019; 34:92-99. [PMID: 31272071 DOI: 10.1016/j.msard.2019.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Glatiramer acetate (GA) is a drug for Multiple Sclerosis (MS) treatment. However, its administration induces anti-drug antibodies (ADA). This research evaluated the sex differences in humoral response against GA in RR-MS patients METHODS: We analyzed 69 RR-MS patients, 43 treated with GA and 26 treated with IFN-β. In all cases, the serum concentration of IgG antibodies was determined by UPLC, whereas the levels of IgG subclasses (1-4) of anti-GA antibodies and the concentration of IL-6 were detected by Multiplex and IL-10, and IFN-γ were detected by ELISA. RESULTS The total concentration of IgG antibodies in patients did not differ between treatments, whereas the IgG levels of ADA were higher in male and female patients treated with GA (P ≤ 0.0001). The subclasses of IgG anti-GA antibodies were as follows: IgG4>>IgG3>IgG1>IgG2. Statistical analysis showed differences in the IgG2 (P ≤ 0.01) and IgG4 (P ≤ 0.0001) subclasses by sex in RR-MS patients. Levels of IgG1 subclass in male patients correlated positively with the circulatory levels of IL-6 (rs = 0.587, P ≤ 0.04) and IFN-γ (rs = 0.721, P ≤ 0.001), while IgG2 subclass levels in female patients correlated with serum levels of IFN-γ (rs = 0.628, P ≤ 0.0006). Statistical analysis did not detect correlations between the levels of IgG (1-4) subclasses of anti-GA antibodies and the evaluated clinical parameters. CONCLUSION This study showed differences in the levels of IgG2 and IgG4 subclasses of ADA between male and female RR-MS patients. Further studies are necessary to take advantage of the clinical potential of this finding.
Collapse
|
7
|
Boziki M, Lagoudaki R, Melo P, Kanidou F, Bakirtzis C, Nikolaidis I, Grigoriadou E, Afrantou T, Tatsi T, Matsi S, Grigoriadis N. Induction of apoptosis in CD4(+) T-cells is linked with optimal treatment response in patients with relapsing-remitting multiple sclerosis treated with Glatiramer acetate. J Neurol Sci 2019; 401:43-50. [DOI: 10.1016/j.jns.2019.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 11/29/2022]
|
8
|
Prod'homme T, Zamvil SS. The Evolving Mechanisms of Action of Glatiramer Acetate. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a029249. [PMID: 29440323 DOI: 10.1101/cshperspect.a029249] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glatiramer acetate (GA) is a synthetic amino acid copolymer that is approved for treatment of relapsing remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS). GA reduces multiple sclerosis (MS) disease activity and has shown comparable efficacy with high-dose interferon-β. The mechanism of action (MOA) of GA has long been an enigma. Originally, it was recognized that GA treatment promoted expansion of GA-reactive T-helper 2 and regulatory T cells, and induced the release of neurotrophic factors. However, GA treatment influences both innate and adaptive immune compartments, and it is now recognized that antigen-presenting cells (APCs) are the initial cellular targets for GA. The anti-inflammatory (M2) APCs induced following treatment with GA are responsible for the induction of anti-inflammatory T cells that contribute to its therapeutic benefit. Here, we review studies that have shaped our current understanding of the MOA of GA.
Collapse
Affiliation(s)
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
9
|
D Alessandro J, Garofalo K, Zhao G, Honan C, Duffner J, Capila I, Fier I, Kaundinya G, Kantor D, Ganguly T. Demonstration of Biological and Immunological Equivalence of a Generic Glatiramer Acetate. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2018; 16:714-723. [PMID: 28240190 PMCID: PMC5684786 DOI: 10.2174/1871527316666170223162747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND In April 2015, the US Food and Drug Administration approved the first generic glatiramer acetate, Glatopa® (M356), as fully substitutable for Copaxone® 20 mg/mL for relapsing forms of multiple sclerosis (MS). This approval was accomplished through an Abbreviated New Drug Application that demonstrated equivalence to Copaxone. METHOD This article will provide an overview of the methods used to establish the biological and immunological equivalence of the two glatiramer acetate products, including methods evaluating antigenpresenting cell (APC) biology, T-cell biology, and other immunomodulatory effects. RESULTS In vitro and in vivo experiments from multiple redundant orthogonal assays within four biological processes (aggregate biology, APC biology, T-cell biology, and B-cell biology) modulated by glatiramer acetate in MS established the biological and immunological equivalence of Glatopa and Copaxone and are described. The following were observed when comparing Glatopa and Copaxone in these experiments: equivalent delays in symptom onset and reductions in "disease" intensity in experimental autoimmune encephalomyelitis; equivalent dose-dependent increases in Glatopa- and Copaxone- induced monokine-induced interferon-gamma release from THP-1 cells; a shift to a T helper 2 phenotype resulting in the secretion of interleukin (IL)-4 and downregulation of IL-17 release; no differences in immunogenicity and the presence of equivalent "immunofingerprints" between both versions of glatiramer acetate; and no stimulation of histamine release with either glatiramer acetate in basophilic leukemia 2H3 cell lines. CONCLUSION In summary, this comprehensive approach across different biological and immunological pathways modulated by glatiramer acetate consistently supported the biological and immunological equivalence of Glatopa and Copaxone.
Collapse
Affiliation(s)
| | - Kevin Garofalo
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ganlin Zhao
- Division of Bioequivalence I, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD. United States
| | - Christopher Honan
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Jay Duffner
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ishan Capila
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ian Fier
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Ganesh Kaundinya
- Research Department, Momenta Pharmaceuticals, Inc., Cambridge, MA. United States
| | - Daniel Kantor
- Division of Neurology, Florida Atlantic University, Boca Raton, FL. United States
| | - Tanmoy Ganguly
- Momenta Pharmaceuticals, Inc., 675 West Kendall Street, Cambridge, MA 02142. United States
| |
Collapse
|
10
|
Abstract
Growing evidence indicates that B cells play a key role in the pathogenesis of multiple sclerosis (MS). B cells occupy distinct central nervous system (CNS) compartments in MS, including the cerebrospinal fluid and white matter lesions. Also, it is now known that, in addition to entering the CNS, B cells can circulate into the periphery via a functional lymphatic system. Data suggest that the role of B cells in MS mainly involves their in situ activation in demyelinating lesions, leading to altered pro- and anti-inflammatory cytokine secretion, and a highly effective antigen-presenting cell function, resulting in activation of memory or naïve T cells. Clinically, B cell-depleting agents show significant efficacy in MS. In addition, many disease-modifying therapies (DMTs) traditionally understood to target T cells are now known to influence B cell number and function. One of the earliest DMTs to be developed, glatiramer acetate (GA), has been shown to reduce the total frequency of B cells, plasmablasts, and memory B cells. It also appears to promote a shift toward reduced inflammation by increasing anti-inflammatory cytokine release and/or reducing pro-inflammatory cytokine release by B cells. In the authors' opinion, this may be mediated by cross-reactivity of B cell receptors for GA with antigen (possibly myelin basic protein) expressed in the MS lesion. More research is required to further characterize the role of B cells and their bidirectional trafficking in the pathogenesis of MS. This may uncover novel targets for MS treatments and facilitate the development of B cell biomarkers of drug response.
Collapse
|
11
|
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38:3-24. [PMID: 28589558 PMCID: PMC6506719 DOI: 10.1002/jat.3476] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
With the rapid development of nanotechnology, potential applications of nanomaterials in medicine have been widely researched in recent years. Nanomaterials themselves can be used as image agents or therapeutic drugs, and for drug and gene delivery, biological devices, nanoelectronic biosensors or molecular nanotechnology. As the composition, morphology, chemical properties, implant sites as well as potential applications become more and more complex, human biosafety of nanomaterials for clinical use has become a major concern. If nanoparticles accumulate in the human body or interact with the body molecules or chemical components, health risks may also occur. Accordingly, the unique chemical and physical properties, potential applications in medical fields, as well as human biosafety in clinical trials are reviewed in this study. Finally, this article tries to give some suggestions for future work in nanomedicine research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| |
Collapse
|
12
|
Selmaj K, Barkhof F, Belova AN, Wolf C, van den Tweel ERW, Oberyé JJL, Mulder R, Egging DF, Koper NP, Cohen JA. Switching from branded to generic glatiramer acetate: 15-month GATE trial extension results. Mult Scler 2017; 23:1909-1917. [PMID: 28090798 PMCID: PMC5700775 DOI: 10.1177/1352458516688956] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Open-label 15-month follow-up of the double-blind, placebo-controlled Glatiramer Acetate clinical Trial to assess Equivalence with Copaxone® (GATE) trial. OBJECTIVE To evaluate efficacy, safety, and tolerability of prolonged generic glatiramer acetate (GTR) treatment and to evaluate efficacy, safety, and tolerability of switching from brand glatiramer acetate (GA) to GTR treatment. METHODS A total of 729 patients received GTR 20 mg/mL daily. Safety was assessed at months 12, 15, 18, 21, and 24 and Expanded Disability Status Scale and magnetic resonance imaging (MRI) scans at months 12, 18, and 24. The presence of glatiramer anti-drug antibodies (ADAs) was tested at baseline and months 1, 3, 6, 9, 12, 18, and 24. RESULTS The mean number of gadolinium-enhancing lesions in the GTR/GTR and GA/GTR groups was similar at months 12, 18, and 24. The change in other MRI parameters was also similar in the GTR/GTR and GA/GTR groups. The annualized relapse rate (ARR) did not differ between the GTR/GTR and GA/GTR groups, 0.21 and 0.24, respectively. The incidence, spectrum, and severity of reported adverse events did not differ between the GTR/GTR and GA/GTR groups. Glatiramer ADA titers were similar in the GTR/GTR and GA/GTR groups. CONCLUSION Efficacy and safety of GTR is maintained over 2 years. Additionally, switching from GA to GTR is safe and well tolerated.
Collapse
Affiliation(s)
| | - Frederik Barkhof
- Image Analysis Center, Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands/Institutes of Neurology & Healthcare Engineering, UCL, London, UK
| | - Anna N Belova
- Research Institute of Traumatology and Orthopedics, Functional Diagnostics, Nizhny Novgorod, Russia
| | | | | | | | | | | | | | - Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
13
|
Amrouche K, Jamin C. Influence of drug molecules on regulatory B cells. Clin Immunol 2017; 184:1-10. [DOI: 10.1016/j.clim.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
|
14
|
Campos-García VR, Herrera-Fernández D, Espinosa-de la Garza CE, González G, Vallejo-Castillo L, Avila S, Muñoz-García L, Medina-Rivero E, Pérez NO, Gracia-Mora I, Pérez-Tapia SM, Salazar-Ceballos R, Pavón L, Flores-Ortiz LF. Process signatures in glatiramer acetate synthesis: structural and functional relationships. Sci Rep 2017; 7:12125. [PMID: 28935954 PMCID: PMC5608765 DOI: 10.1038/s41598-017-12416-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022] Open
Abstract
Glatiramer Acetate (GA) is an immunomodulatory medicine approved for the treatment of multiple sclerosis, whose mechanisms of action are yet to be fully elucidated. GA is comprised of a complex mixture of polypeptides with different amino acid sequences and structures. The lack of sensible information about physicochemical characteristics of GA has contributed to its comprehensiveness complexity. Consequently, an unambiguous determination of distinctive attributes that define GA is of highest relevance towards dissecting its identity. Herein we conducted a study of characteristic GA heterogeneities throughout its manufacturing process (process signatures), revealing a strong impact of critical process parameters (CPPs) on the reactivity of amino acid precursors; reaction initiation and polymerization velocities; and peptide solubility, susceptibility to hydrolysis, and size-exclusion properties. Further, distinctive GA heterogeneities were correlated to defined immunological and toxicological profiles, revealing that GA possesses a unique repertoire of active constituents (epitopes) responsible of its immunological responses, whose modification lead to altered profiles. This novel approach established CPPs influence on intact GA peptide mixture, whose physicochemical identity cannot longer rely on reduced properties (based on complete or partial GA degradation), providing advanced knowledge on GA structural and functional relationships to ensure a consistent manufacturing of safe and effective products.
Collapse
Affiliation(s)
- Víctor R Campos-García
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Daniel Herrera-Fernández
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Carlos E Espinosa-de la Garza
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - German González
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico.,Departamento de Farmacología, Cinvestav-IPN, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Sandra Avila
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Leslie Muñoz-García
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Néstor O Pérez
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Isabel Gracia-Mora
- Departamento de Quı́mica Inorgánica y Nuclear, Facultad de Quı́mica, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Investigación Científica 70, 04510, Ciudad de México, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico.,Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Rodolfo Salazar-Ceballos
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| | - Luis F Flores-Ortiz
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico.
| |
Collapse
|
15
|
Vargas DL, Tyor WR. Update on disease-modifying therapies for multiple sclerosis. J Investig Med 2017; 65:883-891. [PMID: 28130412 DOI: 10.1136/jim-2016-000339] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2017] [Indexed: 01/12/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system (CNS). It predominantly affects young women and is one of the most common causes of disability in young adults. MS is characterized by formation of white matter lesions in the CNS as a result of inflammation, demyelination, and axonal loss. Treatment has been a focus of neurological research for over 60 years. A number of disease-modifying therapies (DMTs) have become available making MS a treatable disease. These compounds target the inflammatory response in MS. They work by decreasing the chances of relapse, decreasing the chances of new lesion formation seen on MRI of the CNS and slowing the accumulation of disability. The first drugs for MS to be available were interferon-β and glatiramer acetate. These work by modulating the inflammatory response via different mechanisms that are briefly discussed. Newer agents have since become available and have significantly changed the dynamics of MS treatment. These include fingolimod, dimethyl fumarate and teriflunomide, which are oral agents. Other second-line and third-line Food and Drug Administration (FDA) approved medications include natalizumab and alemtuzumab. Natalizumab is considered one of the most potent treatments for relapse prevention. However, the high risk of progressive multifocal leukoencephalopathy (PML), which is caused by JC virus infection in the brain, tempers the more widespread use of this agent; nevertheless, JC virus antibody tests have helped to stratify the risk of PML. Alemtuzumab, which also has a considerable side effect profile, is likewise highly efficacious. Ocrelizumab, a monoclonal antibody to CD20 on B cells, is a highly effective agent for MS that is likely to be approved soon by the FDA. MS is a major contributor to healthcare costs and it is critical that healthcare providers be aware of the availability and benefits of DMTs. It is imperative that prompt and adequate treatment be established on diagnosis. Changes in therapy should be considered when there is evidence of disease activity as well as accumulation of disability or safety or tolerability concerns.
Collapse
Affiliation(s)
- Diana L Vargas
- Department of Neurology, Emory University School of Medicine, Neurology Service, Atlanta VA Medical Center, Decatur, Georgia, USA
| | - William R Tyor
- Department of Neurology, Emory University School of Medicine, Neurology Service, Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
16
|
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) characterized by loss of motor and sensory function that results from immune-mediated inflammation, demyelination, and subsequent axonal damage. Clinically, most MS patients experience recurrent episodes (relapses) of neurological impairment, but in most cases (60–80%) the course of the disease eventually becomes chronic and progressive, leading to cumulative motor, sensory, and visual disability, and cognitive deficits. The course of the disease is largely unpredictable and its clinical presentation is variable, but its predilection for certain parts of the CNS, which includes the optic nerves, the brain stem, cerebellum, and cervical spinal cord, provides a characteristic constellation of signs and symptoms. Several variants of MS have been nowadays defined with variable immunopathogenesis, course and prognosis. Many new treatments targeting the immune system have shown efficacy in preventing the relapses of MS and have been introduced to its management during the last decade.
Collapse
|
17
|
Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM, Machado S, Jeganathan V, Wright P, Najjar S, Cao Y, Sands W, Keskin DB, Stern JNH. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol Res 2016; 63:58-69. [PMID: 26475738 DOI: 10.1007/s12026-015-8719-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. It is characterized by demyelination of neurons and loss of neuronal axons and oligodendrocytes. In MS, auto-reactive T cells and B cells cross the blood-brain barrier (BBB), causing perivenous demyelinating lesions that form multiple discrete inflammatory demyelinated plaques located primarily in the white matter. In chronic MS, cortical demyelination and progressive axonal transections develop. Treatment for MS can be stratified into disease-modifying therapies (DMTs) and symptomatic therapy. DMTs aim to decrease circulating immune cells or to prevent these cells from crossing the BBB and reduce the inflammatory response. There are currently 10 DMTs approved for the relapsing forms of MS; these vary with regard to their efficacy, route and frequency of administration, adverse effects, and toxicity profile. Better drug delivery systems are being developed in order to decrease adverse effects, increase drug efficacy, and increase patient compliance through the direct targeting of pathologic cells. Here, we address the uses and benefits of advanced drug delivery systems, including nanoparticles, microparticles, fusion antibodies, and liposomal formulations. By altering the properties of therapeutic particles and enhancing targeting, breakthrough drug delivery technologies potentially applicable to multiple disease treatments may rapidly emerge.
Collapse
Affiliation(s)
- Inna Tabansky
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Mark D Messina
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Catherine Bangeranye
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Jeffrey Goldstein
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Karen M Blitz-Shabbir
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Suly Machado
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Venkatesh Jeganathan
- Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Paul Wright
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Souhel Najjar
- Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Yonghao Cao
- Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Warren Sands
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Derin B Keskin
- Department of Cancer Immunology and AIDS, Dana Farber-Harvard Cancer Institute, Boston, MA, USA
| | - Joel N H Stern
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA. .,Department of Neurology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Autoimmunity, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| |
Collapse
|
18
|
Fawaz CN, Makki IS, Kazan JM, Gebara NY, Andary FS, Itani MM, El-Sayyed M, Zeidan A, Quartarone A, Darwish H, Mondello S. Neuroproteomics and microRNAs studies in multiple sclerosis: transforming research and clinical knowledge in biomarker research. Expert Rev Proteomics 2015; 12:637-50. [DOI: 10.1586/14789450.2015.1099435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Rovituso DM, Duffy CE, Schroeter M, Kaiser CC, Kleinschnitz C, Bayas A, Elsner R, Kuerten S. The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients. Sci Rep 2015; 5:14265. [PMID: 26387426 PMCID: PMC4585696 DOI: 10.1038/srep14265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/21/2015] [Indexed: 12/02/2022] Open
Abstract
B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-ß (IFN-β)-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders.
Collapse
Affiliation(s)
- Damiano M Rovituso
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Cathrina E Duffy
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Michael Schroeter
- Department of Neurology, University Hospitals of Cologne, Cologne, Germany
| | - Claudia C Kaiser
- Department of Neurology, University Hospitals of Cologne, Cologne, Germany
| | | | - Antonios Bayas
- Department of Neurology, Klinikum Augsburg, Augsburg, Germany
| | - Rebecca Elsner
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Corominas M, Postigo I, Cardona V, Lleonart R, Romero-Pinel L, Martinez J. IgE-Mediated Allergic Reactions after the First Administration of Glatiramer Acetate in Patients with Multiple Sclerosis. Int Arch Allergy Immunol 2015; 165:244-6. [PMID: 25634237 DOI: 10.1159/000371418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 12/05/2014] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mercè Corominas
- Division of Allergology, Department of Internal Medicine, IDIBELL, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Milo R. Effectiveness of multiple sclerosis treatment with current immunomodulatory drugs. Expert Opin Pharmacother 2015; 16:659-73. [DOI: 10.1517/14656566.2015.1002769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Zhang M, Zhan XL, Ma ZY, Chen XS, Cai QY, Yao ZX. Thyroid hormone alleviates demyelination induced by cuprizone through its role in remyelination during the remission period. Exp Biol Med (Maywood) 2015; 240:1183-96. [PMID: 25577802 DOI: 10.1177/1535370214565975] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/12/2014] [Indexed: 01/09/2023] Open
Abstract
Multiple sclerosis (MS) is a disease induced by demyelination in the central nervous system, and the remission period of MS is crucial for remyelination. In addition, abnormal levels of thyroid hormone (TH) have been identified in MS. However, in the clinic, insufficient attention has been paid to the role of TH in the remission period. Indeed, TH not only functions in the development of the brain but also affects myelination. Therefore, it is necessary to observe the effect of TH on remyelination during this period. A model of demyelination induced by cuprizone (CPZ) was used to observe the function of TH in remyelination during the remission period of MS. Through weighing and behavioral tests, we found that TH improved the physical symptoms of mice impaired by CPZ. Supplementation of TH led to the repair of myelin as detected by immunohistochemistry and western blot. In addition, a sufficient TH supply resulted in an increase in myelinated axons without affecting myelin thickness and g ratio in the corpus callosum, as detected by electron microscopy. Double immunostaining with myelin basic protein and neurofilament 200 (NF200) showed that the CPZ-induced impairment of axons was alleviated by TH. Conversely, insufficient TH induced by 6-propyl-2-thiouracil resulted in the enlargement of mitochondria. Furthermore, we found that an adequate supply of TH promoted the proliferation and differentiation of oligodendrocyte lineage cells by immunofluorescence, which was beneficial to remyelination. Further, we found that TH reduced the number of astrocytes without affecting microglia. Conclusively, it was shown that TH alleviated demyelination induced by CPZ by promoting the development of oligodendrocyte lineage cells and remyelination. The critical time for remyelination is the remission period of MS. TH plays a significant role in alleviating demyelination during the remission period in the clinical treatment of MS.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiao L Zhan
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zi Y Ma
- Battalion 14 of Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Xing S Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Qi Y Cai
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zhong X Yao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
23
|
Biomarker Studies in Multiple Sclerosis: From Proteins to Noncoding RNAs. Neurochem Res 2014; 39:1661-74. [DOI: 10.1007/s11064-014-1386-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/09/2014] [Accepted: 07/09/2014] [Indexed: 11/26/2022]
|
24
|
Conner J. Glatiramer acetate and therapeutic peptide vaccines for multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2054-989x-1-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Thamilarasan M, Hecker M, Goertsches RH, Paap BK, Schröder I, Koczan D, Thiesen HJ, Zettl UK. Glatiramer acetate treatment effects on gene expression in monocytes of multiple sclerosis patients. J Neuroinflammation 2013; 10:126. [PMID: 24134771 PMCID: PMC3852967 DOI: 10.1186/1742-2094-10-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/06/2013] [Indexed: 12/20/2022] Open
Abstract
Background Glatiramer acetate (GA) is a mixture of synthetic peptides used in the treatment of patients with relapsing-remitting multiple sclerosis (RRMS). The aim of this study was to investigate the effects of GA therapy on the gene expression of monocytes. Methods Monocytes were isolated from the peripheral blood of eight RRMS patients. The blood was obtained longitudinally before the start of GA therapy as well as after one day, one week, one month and two months. Gene expression was measured at the mRNA level by microarrays. Results More than 400 genes were identified as up-regulated or down-regulated in the course of therapy, and we analyzed their biological functions and regulatory interactions. Many of those genes are known to regulate lymphocyte activation and proliferation, but only a subset of genes was repeatedly differentially expressed at different time points during treatment. Conclusions Overall, the observed gene regulatory effects of GA on monocytes were modest and not stable over time. However, our study revealed several genes that are worthy of investigation in future studies on the molecular mechanisms of GA therapy.
Collapse
Affiliation(s)
| | - Michael Hecker
- Institute of Immunology, University of Rostock, Schillingallee 68, Rostock 18057, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
It is widely accepted that the main common pathogenetic pathway in multiple sclerosis (MS) involves an immune-mediated cascade initiated in the peripheral immune system and targeting CNS myelin. Logically, therefore, the therapeutic approaches to the disease include modalities aiming at downregulation of the various immune elements that are involved in this immunologic cascade. Since the introduction of interferons in 1993, which were the first registered treatments for MS, huge steps have been made in the field of MS immunotherapy. More efficious and specific immunoactive drugs have been introduced and it appears that the increased specificity for MS of these new treatments is paralleled by greater efficacy. Unfortunately, this seemingly increased efficacy has been accompanied by more safety issues. The immunotherapeutic modalities can be divided into two main groups: those affecting the acute stages (relapses) of the disease and the long-term treatments that are aimed at preventing the appearance of relapses and the progression in disability. Immunomodulating treatments may also be classified according to the level of the 'immune axis' where they exert their main effect. Since, in MS, a neurodegenerative process runs in parallel and as a consequence of inflammation, early immune intervention is warranted to prevent progression of relapses of MS and the accumulation of disability. The use of neuroimaging (MRI) techniques that allow the detection of silent inflammatory activity of MS and neurodegeneration has provided an important tool for the substantiation of the clinical efficacy of treatments and the early diagnosis of MS. This review summarizes in detail the existing information on all the available immunotherapies for MS, old and new, classifies them according to their immunologic mechanisms of action and proposes a structured algorithm/therapeutic scheme for the management of the disease.
Collapse
|
27
|
Schütz CA, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond) 2013; 8:449-67. [DOI: 10.2217/nnm.13.8] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
28
|
Stoy N. Innate origins of multiple sclerosis pathogenesis: Implications for computer-assisted design of disease-modifying therapies. Drug Dev Res 2011. [DOI: 10.1002/ddr.20477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Boster A, Bartoszek MP, O'Connell C, Pitt D, Racke M. Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord 2011; 4:319-32. [PMID: 22010043 DOI: 10.1177/1756285611422108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The current Multiple Sclerosis (MS) therapeutic landscape is rapidly growing. Glatiramer acetate (GA) remains unique given its non-immunosuppressive mechanism of action as well as its superior long-term safety and sustained efficacy data. In this review, we discuss proposed mechanisms of action of GA. Then we review efficacy data for reduction of relapses and slowing disability as well as long term safety data. Finally we discuss possible future directions of this unique polymer in the treatment of MS.
Collapse
Affiliation(s)
- Aaron Boster
- Multiple Sclerosis Center, Department of Neurology The Ohio State University Medical Center 395 West 12th Avenue, 7th floor Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
30
|
Sellebjerg F, Hedegaard CJ, Krakauer M, Hesse D, Lund H, Nielsen CH, Søndergaard HB, Sørensen PS. Glatiramer acetate antibodies, gene expression and disease activity in multiple sclerosis. Mult Scler 2011; 18:305-13. [PMID: 22020419 DOI: 10.1177/1352458511420268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Glatiramer acetate (GA) treatment suppresses disease activity in multiple sclerosis (MS). The immunological response to treatment may differ in patients who are stable on GA therapy and patients with breakthrough disease activity, but the results of previous studies are inconsistent. OBJECTIVES We studied the immunological response to GA and its relationship with disease activity. METHODS Anti-GA antibodies in plasma and the expression of genes encoding cytokines and T-cell-polarizing transcription factors in blood cells were analysed by flow cytometric bead array and polymerase chain reaction (PCR) analysis in 39 untreated and 29 GA-treated relapsing-remitting MS patients. Definition of breakthrough disease was based on the occurrence of relapses, disability progression, or gadolinium (Gd)-enhanced MRI. RESULTS The expression of T helper type 1 (Th1) and Th17 cytokines and transcription factors was reduced during long-term treatment, but there was no relationship between the expression of cytokines and transcription factors and anti-GA antibodies. High expression of mRNA encoding GATA3 and lymphotoxin-β (LT-β) was associated with low disease activity in Gd-enhanced MRI studies. None of the variables studied were associated with clinical disease activity. GA treatment resulted in the development of IgG and IgG4 anti-GA antibodies during the first months of treatment, persisting during long-term treatment. CONCLUSIONS The observed relationship between the expression of mRNA encoding GATA3 and LT-β expression and MRI disease activity deserves further analysis in future studies. The development of anti-GA antibodies was observed in all patients treated with GA, but this was not related with measures of cellular immunity, clinical or MRI disease activity.
Collapse
Affiliation(s)
- F Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Graber JJ, Dhib-Jalbut S. Biomarkers of disease activity in multiple sclerosis. J Neurol Sci 2011; 305:1-10. [DOI: 10.1016/j.jns.2011.03.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/15/2022]
|
32
|
Lalive PH, Neuhaus O, Benkhoucha M, Burger D, Hohlfeld R, Zamvil SS, Weber MS. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 2011; 25:401-14. [PMID: 21476611 PMCID: PMC3963480 DOI: 10.2165/11588120-000000000-00000] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glatiramer acetate is a synthetic, random copolymer widely used as a first-line agent for the treatment of relapsing-remitting multiple sclerosis (MS). While earlier studies primarily attributed its clinical effect to a shift in the cytokine secretion of CD4+ T helper (T(h)) cells, growing evidence in MS and its animal model, experimental autoimmune encephalomyelitis (EAE), suggests that glatiramer acetate treatment is associated with a broader immunomodulatory effect on cells of both the innate and adaptive immune system. To date, glatiramer acetate-mediated modulation of antigen-presenting cells (APC) such as monocytes and dendritic cells, CD4+ T(h) cells, CD8+ T cells, Foxp3+ regulatory T cells and antibody production by plasma cells have been reported; in addition, most recent investigations indicate that glatiramer acetate treatment may also promote regulatory B-cell properties. Experimental evidence suggests that, among these diverse effects, a fostering interplay between anti-inflammatory T-cell populations and regulatory type II APC may be the central axis in glatiramer acetate-mediated immune modulation of CNS autoimmune disease. Besides altering inflammatory processes, glatiramer acetate could exert direct neuroprotective and/or neuroregenerative properties, which could be of relevance for the treatment of MS, but even more so for primarily neurodegenerative disorders, such as Alzheimer's or Parkinson's disease. In this review, we provide a comprehensive and critical overview of established and recent findings aiming to elucidate the complex mechanism of action of glatiramer acetate.
Collapse
Affiliation(s)
- Patrice H. Lalive
- Department of Neurosciences, Division of Neurology, Geneva University Hospital and University of Geneva, Geneva, Switzerland,Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, Geneva University Hospital and University of Geneva, Geneva, Switzerland,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Oliver Neuhaus
- Department of Neurology, Kliniken Landkreis Sigmaringen, Sigmaringen, Germany
| | - Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Danielle Burger
- Faculty of Medicine, Division of Immunology and Allergy, HansWilsdorf Laboratory, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Reinhard Hohlfeld
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Scott S. Zamvil
- Department of Neurology, University of California, San Francisco, California, USA
| | - Martin S. Weber
- Department of Neurology, Technische Universität München, Munich, Germany
| |
Collapse
|
33
|
Preferential increase of B-cell activating factor in the cerebrospinal fluid of neuromyelitis optica in a white population. Mult Scler 2010; 16:1453-7. [DOI: 10.1177/1352458510380416] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Anti-aquaporin-4 antibodies are believed to have a central pathogenetic role in neuromyelitis optica (NMO). B-cell activating factor (BAFF) is one of the crucial factors that determines the fate and survival of B cells and may play a role in induction of antibody-mediated autoimmunity. Objectives: To evaluate the blood and cerebrospinal fluid (CSF) levels of BAFF in NMO and multiple sclerosis (MS) patients. Methods: Peripheral blood samples were collected from 21 definite NMO patients, 22 healthy controls and 45 MS patients and CSF from 8 NMO and 11 MS patients. BAFF levels were measured using an ELISA technique. Results: We found significantly higher levels of BAFF in the CSF of NMO patients compared with that in MS (215.6 ± 41 pg/ml in NMO and 77.4 ± 11 pg/ml in MS, p < 0.001). There were no differences in serum BAFF levels between NMO, MS and healthy donors. MS patients treated with interferon-beta (IFNβ) or glatiramer acetate (GA) had significantly higher serum BAFF levels, as compared with untreated patients (1227 ± 203 pg/ml in untreated MS, 2253 ± 83.4 pg/ml in GA-treated, p < 0.01, and 2106 ± 277.9 pg/ml in interferon-treated, p < 0.05) Conclusion: The presence of increased BAFF, a soluble factor associated with B-cell activation in the proximity of the disease target organ (CSF) in NMO, and its increase in association with immunomodulating treatments, may help our understanding of the immunopathogenetic mechanisms involved in this disease and contribute to more successful and targeted therapeutic intervention.
Collapse
|
34
|
|
35
|
|