1
|
Gao XX, Zhang XH, Yu JA. Trends and hotspots in burns-related pain research: A bibliometric analysis. Burns 2025; 51:107345. [PMID: 39793163 DOI: 10.1016/j.burns.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE The aim of this investigation was to conduct a thorough synthesis of the extant scholarly discourse and to delineate the prevailing global trends in the domain of burn pain, employing a bibliometric analysis. METHODS A bibliometric analysis was performed utilizing the Web of Science Core Collection database. Articles were selected based on titles or abstracts containing keywords associated with burns and pain. Both quantitative and qualitative methodologies were applied to examine the retrieved data, encompassing an analysis of publication trends, research themes, and collaboration networks. RESULTS The number of articles on this topic has been increasing, averaging an annual growth rate of 6.9 % from 1997 to 2023. Contributions have come from 645 institutions across 53 countries, resulting in 446 papers that span areas such as nursing, anesthesia, and immunology. Key journals include Burns, Journal of Burn Care & Research, and Pain. The United States has demonstrated a significant research output in this field, with active international collaboration, notably with Washington University leading in contributions. Patterson DR was the most prolific author in terms of published papers, while Choiniere M was the most frequently co-cited author. The focus of research has shifted from symptom management to exploring pain mechanisms. Current research priorities in burn pain include "quality of life," "music therapy," and "psychological state." Recent analysis has highlighted key areas in neuropathic pain mechanisms, novel analgesic therapies, and specific groups such as pediatric burn patients. Influential studies have advanced our understanding of pathophysiology, while psychological interventions and inflammation are increasingly receiving attention. Emerging topics include non-pharmacological interventions, psychological support, technology in pain assessment and management, quality of life, and personalized pain management. CONCLUSION Research on burn pain is advancing rapidly; however, collaboration among countries and institutions remains limited. Increased cooperation and communication across these entities could significantly advance the field in the future. Future research should prioritize placebo-controlled trials of targeted therapeutic drugs and innovative pain management approaches, with a strong emphasis on patient outcomes and quality of life.
Collapse
Affiliation(s)
- Xin-Xin Gao
- Department of Burn Surgery, The First Hospital of Jilin University, Chaoyang District, 1 Xinmin Street, Changchun City, Jilin Province 130061, China.
| | - Xiu-Hang Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Chaoyang District, 1 Xinmin Street, Changchun City, Jilin Province 130061, China.
| | - Jia-Ao Yu
- Department of Burn Surgery, The First Hospital of Jilin University, Chaoyang District, 1 Xinmin Street, Changchun City, Jilin Province 130061, China.
| |
Collapse
|
2
|
Scheuren PS, Calvo M. Exploring neuroinflammation: A key driver in neuropathic pain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:311-338. [PMID: 39580216 DOI: 10.1016/bs.irn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Inflammation is a fundamental part of the body's natural defense mechanism, involving immune cells and inflammatory mediators to promote healing and protect against harm. In the event of a lesion or disease of the somatosensory nervous system, inflammation, however, triggers a cascade of changes in both the peripheral and central nervous systems, ultimately contributing to chronic neuropathic pain. Substantial evidence links neuroinflammation to various conditions associated with neuropathic pain. This chapter will explore the role of neuroinflammation in the initiation, maintenance, and resolution of peripheral and central neuropathic pain. Additionally, biomarkers of neuroinflammation in humans will be examined, emphasizing their relevance in different neuropathic pain disorders.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Margarita Calvo
- Physiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
3
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
4
|
Dekamin S, Ghasemi M, Dehpour AR, Ghazi-Khansari M, Shafaroodi H. Protective Effects of Glatiramer Acetate Against Paclitaxel-Induced Peripheral Neuropathy in Rats: A Role for Inflammatory Cytokines and Oxidative Stress. Neurochem Res 2024; 49:1049-1060. [PMID: 38252396 DOI: 10.1007/s11064-023-04088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major challenge for cancer patients who undergo chemotherapy with paclitaxel. Therefore, finding effective therapies for CIPN is crucial. Glatiramer acetate is used to treat multiple sclerosis that exerts neuroprotective properties in various studies. We hypothesized that glatiramer acetate could also improve the paclitaxel-induced peripheral neuropathy. We used a rat model of paclitaxel (2 mg/kg/every other day for 7 doses)-induced peripheral neuropathy. Rats were treated with either different doses of glatiramer acetate (1, 2, 4 mg/kg/day) or its vehicle for 14 days in separate groups. The mechanical and thermal sensitivity of the rats by using the Von Frey test and the Hot Plate test, respectively, were assessed during the study. The levels of oxidative stress (malondialdehyde and superoxide dismutase), inflammatory markers (TNF-α, IL-10, NF-kB), and nerve damage (H&E and S100B staining) in the sciatic nerves of the rats were also measured at the end of study. Glatiramer acetate (2 and 4 mg/kg) exerted beneficial effects on thermal and mechanical allodynia tests. It also modulated the inflammatory response by reducing TNF-α and NF-κB levels, enhancing IL-10 production, and improving the oxidative stress status by lowering malondialdehyde and increasing superoxide dismutase activity in the sciatic nerve of the rats. Furthermore, glatiramer acetate enhanced nerve conduction velocity in all treatment groups. Histological analysis revealed that glatiramer acetate (2 and 4 mg/kg) prevented paclitaxel-induced damage to the nerve structure. These results suggest that glatiramer acetate can alleviate the peripheral neuropathy induced by paclitaxel.
Collapse
Affiliation(s)
- Sajad Dekamin
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, 01803, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mousavi SH, Lindsey JW, Westlund KN, Alles SRA. Trigeminal Neuralgia as a Primary Demyelinating Disease: Potential Multimodal Evidence and Remaining Controversies. THE JOURNAL OF PAIN 2024; 25:302-311. [PMID: 37643657 DOI: 10.1016/j.jpain.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Trigeminal neuralgia is a heterogeneous disorder with likely multifactorial and complex etiology; however, trigeminal nerve demyelination and injury are observed in almost all patients with trigeminal neuralgia. The current management strategies for trigeminal neuralgia primarily involve anticonvulsants and surgical interventions, neither of which directly address demyelination, the pathological hallmark of trigeminal neuralgia, and treatments targeting demyelination are not available. Demyelination of the trigeminal nerve has been historically considered a secondary effect of vascular compression, and as a result, trigeminal neuralgia is not recognized nor treated as a primary demyelinating disorder. In this article, we review the evolution of our understanding of trigeminal neuralgia and provide evidence to propose its potential categorization, at least in some cases, as a primary demyelinating disease by discussing its course and similarities to multiple sclerosis, the most prevalent central nervous system demyelinating disorder. This proposed categorization may provide a basis in investigating novel treatment modalities beyond the current medical and surgical interventions, emphasizing the need for further research into demyelination of the trigeminal sensory pathway in trigeminal neuralgia. PERSPECTIVE: This article proposes trigeminal neuralgia as a demyelinating disease, supported by histological, clinical, and radiological evidence. Such categorization offers a plausible explanation for controversies surrounding trigeminal neuralgia. This perspective holds potential for future research and developing therapeutics targeting demyelination in the condition.
Collapse
Affiliation(s)
- Seyed H Mousavi
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - John W Lindsey
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Karin N Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
6
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
7
|
Patel NP, Bates CM, Patel A. Developmental Approaches to Chronic Pain: A Narrative Review. Cureus 2023; 15:e45238. [PMID: 37842431 PMCID: PMC10576536 DOI: 10.7759/cureus.45238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Chronic pain, which can potentially develop from acute pain, subacute pain, or breakthrough pain, is generally defined as pain persisting for greater than three months with minimal relief. Chronic pain can be associated with a myriad of medical conditions. It is also one of the most common causes of disability, physical suffering, depression, and reduced quality of life. Treatment can vary depending on the underlying pathophysiology and can involve physical therapy, non-pharmaceutical approaches, pharmaceutical drugs, and invasive procedures. Currently available pharmaceutical agents have been effective for short-term management of chronic pain conditions, but few options address chronic pain with long-term efficacy. First-line pharmaceutical agents can potentially include over-the-counter (OTC) or prescription-strength non-steroidal anti-inflammatory drugs (NSAIDs), which have been linked to numerous side effects. If chronic pain persists, steroids are frequently used to provide longer relief. For more progressive or resistant chronic pain and/or in conjunction with invasive procedures, opioids have been utilized for acute treatment and for long-term maintenance. While these agents have proven to be effective for both acute and long-term use due to their modulation at various peripheral and central opioid receptors, they can be associated with numerous side effects and tied to the risk of addiction. As such, an unmet need exists to identify treatment modalities that provide opioid-like pain relief without opioid-induced adverse effects and the potential for addiction. This narrative review will provide an overview of the currently available treatment modalities for chronic pain and their adverse event profiles, as well as a review of therapies that are currently in development and/or preclinical trials for the management and treatment of chronic pain.
Collapse
Affiliation(s)
- Nikita P Patel
- College of Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Chad M Bates
- College of Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Aakash Patel
- Anesthesiology, Albert Einstein College of Medicine, Jacobi Medical Center, Bronx, USA
| |
Collapse
|
8
|
Zaino B, Goel R, Devaragudi S, Prakash A, Vaghamashi Y, Sethi Y, Patel N, Kaka N. Diabetic neuropathy: Pathogenesis and evolving principles of management. Dis Mon 2023; 69:101582. [PMID: 37164794 DOI: 10.1016/j.disamonth.2023.101582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The global rise of prediabetes and diabetes has spawned an epidemic of complications associated with these conditions. Neuropathy is the most common consequence, with distal symmetric polyneuropathy (DSP) being the most prevalent. Diabetic neuropathy (DN) is a debilitating consequence of diabetes mellitus resulting in the highest morbidity and death, besides imposing a substantial financial burden on the patient. Loss of sensory function commencing distally in the lower limbs, accompanied by discomfort and considerable morbidity, characterizes diabetic neuropathy. The clinical evaluation and therapeutic options for diabetic peripheral neuropathy are multifaceted. At least fifty percent of people with diabetes acquire diabetic neuropathy over time. Good glycemic control halts the evolution in individuals with Type 1 diabetes mellitus. These results have prompted fresh attempts to comprehend the origin and develop new guidelines for prevention and treatment. New recommendations have also been established for the treatment of painful DN using separate classes of medications, with an emphasis on avoiding the use of opioids. Although our comprehension of the intricacies of diabetic neuropathy has progressed significantly over the past decade, the unique processes driving the neuropathy in type 1 and type 2 diabetes remain unexplained. Currently, glycemic control and pain management are the only effective therapies. While glucose management significantly reduces neuropathy development in type 1 diabetics, the effect is considerably lower in type 2 diabetics. Evidence supports the use of anticonvulsants and antidepressants for diabetic peripheral neuropathy pain treatment. However, the absence of disease-modifying medications for diabetic DSP necessitates the identification of unrecognized modifiable risk factors. It is imperative to identify the 'missed' risk factors and targets, allowing comprehensive, individualized care for patients.
Collapse
Affiliation(s)
- Basem Zaino
- Tishreen University, Syria; PearResearch, India
| | - Rashika Goel
- Punjab Institute of Medical Sciences, India; PearResearch, India
| | - Sanjana Devaragudi
- Apollo Institute of Medical Sciences and Research, Hyderabad, India; PearResearch, India
| | - Ananya Prakash
- Narayana Institute of Cardiac Sciences, Bangalore, India; PearResearch, India
| | - Yogeshkumar Vaghamashi
- Bicol Christian College of Medicine, Legazpi city, Philippines; Narayana Institute of Cardiac Sciences, Bangalore, India
| | - Yashendra Sethi
- PearResearch, India; Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Neil Patel
- PearResearch, India; GMERS Medical College Himmatnagar, India.
| | - Nirja Kaka
- PearResearch, India; GMERS Medical College Himmatnagar, India
| |
Collapse
|
9
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
10
|
Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy. Biomed Pharmacother 2022; 156:113846. [DOI: 10.1016/j.biopha.2022.113846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
|
11
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Ding YQ, Qi JG. Sensory root demyelination: Transforming touch into pain. Glia 2021; 70:397-413. [PMID: 34549463 DOI: 10.1002/glia.24097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022]
Abstract
The normal feeling of touch is vital for nearly every aspect of our daily life. However, touching is not always felt as touch, but also abnormally as pain under numerous diseased conditions. For either mechanistic understanding of the faithful feeling of touch or clinical management of chronic pain, there is an essential need to thoroughly dissect the neuropathological changes that lead to painful touch or tactile allodynia and their corresponding cellular and molecular underpinnings. In recent years, we have seen remarkable progress in our understanding of the neural circuits for painful touch, with an increasing emphasis on the upstream roles of non-neuronal cells. As a highly specialized form of axon ensheathment by glial cells in jawed vertebrates, myelin sheaths not only mediate their outstanding neural functions via saltatory impulse propagation of temporal and spatial precision, but also support long-term neuronal/axonal integrity via metabolic and neurotrophic coupling. Therefore, myelinopathies have been implicated in diverse neuropsychiatric diseases, which are traditionally recognized as a result of the dysfunctions of neural circuits. However, whether myelinopathies can transform touch into pain remains a long-standing question. By summarizing and reframing the fragmentary but accumulating evidence so far, the present review indicates that sensory root demyelination represents a hitherto underappreciated neuropathological change for most neuropathic conditions of painful touch and offers an insightful window into faithful tactile sensation as well as a potential therapeutic target for intractable painful touch.
Collapse
Affiliation(s)
- You-Quan Ding
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Guo Qi
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
14
|
Bethea JR, Fischer R. Role of Peripheral Immune Cells for Development and Recovery of Chronic Pain. Front Immunol 2021; 12:641588. [PMID: 33692810 PMCID: PMC7937804 DOI: 10.3389/fimmu.2021.641588] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic neuropathic pain (CNP) is caused by a lesion or disease of the somatosensory nervous system. It affects ~8% of the general population and negatively impacts a person's level of functioning and quality of life. Its resistance to available pain therapies makes CNP a major unmet medical need. Immune cells have been shown to play a role for development, maintenance and recovery of CNP and therefore are attractive targets for novel pain therapies. In particular, in neuropathic mice and humans, microglia are activated in the dorsal horn and peripheral immune cells infiltrate the nervous system to promote chronic neuroinflammation and contribute to the initiation and progression of CNP. Importantly, immunity not only controls pain development and maintenance, but is also essential for pain resolution. In particular, regulatory T cells, a subpopulation of T lymphocytes with immune regulatory function, and macrophages were shown to be important contributors to pain recovery. In this review we summarize the interactions of the peripheral immune system with the nervous system and outline their contribution to the development and recovery of pain.
Collapse
Affiliation(s)
- John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
15
|
An Investigation into Proteomic Constituents of Cerebrospinal Fluid in Patients with Chronic Peripheral Neuropathic Pain Medicated with Opioids- a Pilot Study. J Neuroimmune Pharmacol 2020; 16:634-650. [PMID: 33219474 DOI: 10.1007/s11481-020-09970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
The pharmacodynamics of opioids for chronic peripheral neuropathic pain are complex and likely extend beyond classical opioid receptor theory. Preclinical evidence of opioid modulation of central immune signalling has not been identified in vivo in humans. Examining the cerebrospinal fluid (CSF) of patients medicated with opioids is required to identify potential pharmacodynamic mechanisms. We compared CSF samples of chronic peripheral neuropathic pain patients receiving opioids (n = 7) versus chronic peripheral neuropathic pain patients not taking opioids (control group, n = 13). Baseline pain scores with demographics were recorded. Proteome analysis was performed using mass spectrometry and secreted neuropeptides were measured by enzyme-linked immunosorbent assay. Based on Gene Ontology analysis, proteins involved in the positive regulation of nervous system development and myeloid leukocyte activation were increased in patients taking opioids versus the control group. The largest decrease in protein expression in patients taking opioids were related to neutrophil mediated immunity. In addition, notably higher expression levels of neural proteins (85%) and receptors (80%) were detected in the opioid group compared to the control group. This study suggests modulation of CNS homeostasis, possibly attributable to opioids, thus highlighting potential mechanisms for the pharmacodynamics of opioids. We also provide new insights into the immunomodulatory functions of opioids in vivo.
Collapse
|
16
|
Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21124229. [PMID: 32545828 PMCID: PMC7352301 DOI: 10.3390/ijms21124229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-β, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.
Collapse
|
17
|
Ding YQ, Luo H, Qi JG. MHCII-restricted T helper cells: an emerging trigger for chronic tactile allodynia after nerve injuries. J Neuroinflammation 2020; 17:3. [PMID: 31900220 PMCID: PMC6942353 DOI: 10.1186/s12974-019-1684-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023] Open
Abstract
Nerve injury-induced chronic pain has been an urgent problem for both public health and clinical practice. While transition to chronic pain is not an inevitable consequence of nerve injuries, the susceptibility/resilience factors and mechanisms for chronic neuropathic pain after nerve injuries still remain unknown. Current preclinical and clinical studies, with certain notable limitations, have shown that major histocompatibility complex class II–restricted T helper (Th) cells is an important trigger for nerve injury-induced chronic tactile allodynia, one of the most prevalent and intractable clinical symptoms of neuropathic pain. Moreover, the precise pathogenic neuroimmune interfaces for Th cells remain controversial, not to mention the detailed pathogenic mechanisms. In this review, depending on the biology of Th cells in a neuroimmunological perspective, we summarize what is currently known about Th cells as a trigger for chronic tactile allodynia after nerve injuries, with a focus on identifying what inconsistencies are evident. Then, we discuss how an interdisciplinary perspective would improve the understanding of Th cells as a trigger for chronic tactile allodynia after nerve injuries. Finally, we hope that the expected new findings in the near future would translate into new therapeutic strategies via targeting Th cells in the context of precision medicine to either prevent or reverse chronic neuropathic tactile allodynia.
Collapse
Affiliation(s)
- You-Quan Ding
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No 17, Section 3, South Ren-min road, Chengdu, 610041, Sichuan, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Guo Qi
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No 17, Section 3, South Ren-min road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Laumet G, Ma J, Robison AJ, Kumari S, Heijnen CJ, Kavelaars A. T Cells as an Emerging Target for Chronic Pain Therapy. Front Mol Neurosci 2019; 12:216. [PMID: 31572125 PMCID: PMC6749081 DOI: 10.3389/fnmol.2019.00216] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
The immune system is critically involved in the development and maintenance of chronic pain. However, T cells, one of the main regulators of the immune response, have only recently become a focus of investigations on chronic pain pathophysiology. Emerging clinical data suggest that patients with chronic pain have a different phenotypic profile of circulating T cells compared to controls. At the preclinical level, findings on the function of T cells are mixed and differ between nerve injury, chemotherapy, and inflammatory models of persistent pain. Depending on the type of injury, the subset of T cells and the sex of the animal, T cells may contribute to the onset and/or the resolution of pain, underlining T cells as a major player in the transition from acute to chronic pain. Specific T cell subsets release mediators such as cytokines and endogenous opioid peptides that can promote, suppress, or even resolve pain. Inhibiting the pain-promoting functions of T cells and/or enhancing the beneficial effects of pro-resolution T cells may offer new disease-modifying strategies for the treatment of chronic pain, a critical need in view of the current opioid crisis.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States.,Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Susmita Kumari
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Cobos EJ, Nickerson CA, Gao F, Chandran V, Bravo-Caparrós I, González-Cano R, Riva P, Andrews NA, Latremoliere A, Seehus CR, Perazzoli G, Nieto FR, Joller N, Painter MW, Ma CHE, Omura T, Chesler EJ, Geschwind DH, Coppola G, Rangachari M, Woolf CJ, Costigan M. Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling. Cell Rep 2019; 22:1301-1312. [PMID: 29386116 PMCID: PMC5908229 DOI: 10.1016/j.celrep.2018.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/23/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
Chronic neuropathic pain is a major morbidity of neural injury, yet its mechanisms are incompletely understood. Hypersensitivity to previously non-noxious stimuli (allodynia) is a common symptom. Here, we demonstrate that the onset of cold hypersensitivity precedes tactile allodynia in a model of partial nerve injury, and this temporal divergence was associated with major differences in global gene expression in innervating dorsal root ganglia. Transcripts whose expression change correlates with the onset of cold allodynia were nociceptor related, whereas those correlating with tactile hypersensitivity were immune cell centric. Ablation of TrpV1 lineage nociceptors resulted in mice that did not acquire cold allodynia but developed normal tactile hypersensitivity, whereas depletion of macrophages or T cells reduced neuropathic tactile allodynia but not cold hypersensitivity. We conclude that neuropathic pain incorporates reactive processes of sensory neurons and immune cells, each leading to distinct forms of hypersensitivity, potentially allowing drug development targeted to each pain type.
Collapse
Affiliation(s)
- Enrique J Cobos
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine and Biomedical Research Center, University of Granada, 18071 Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
| | - Chelsea A Nickerson
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Fuying Gao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vijayendran Chandran
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, School of Medicine, University of Florida, Gainesville, FL 32610-0296, USA
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine and Biomedical Research Center, University of Granada, 18071 Granada, Spain
| | - Rafael González-Cano
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Priscilla Riva
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Corey R Seehus
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gloria Perazzoli
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine and Biomedical Research Center, University of Granada, 18071 Granada, Spain; Department of Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine and Biomedical Research Center, University of Granada, 18071 Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
| | - Nicole Joller
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michio W Painter
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chi Him Eddie Ma
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Takao Omura
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Elissa J Chesler
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Rangachari
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Clifford J Woolf
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Costigan
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesia, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Bernardes D, de Oliveira ALR. Regular Exercise Modifies Histopathological Outcomes of Pharmacological Treatment in Experimental Autoimmune Encephalomyelitis. Front Neurol 2018; 9:950. [PMID: 30524355 PMCID: PMC6256135 DOI: 10.3389/fneur.2018.00950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Although it has been suggested that healthier lifestyle may optimize effects of the immunomodulation drugs for treating multiple sclerosis (MS), the knowledge regarding this kind of interactions is limited. Objective: The aim of the present study was to investigate the effects of treadmill exercise in combination with pharmacological treatment in an animal model for MS. Methods: C57BL/6J female mice were subjected to daily treadmill exercise for 4 weeks before immunization and 6 weeks before clinical presentation of disease. Dimethyl fumarate (DMF) or glatiramer acetate (GA) were administered after the first clinical relapse. Histopathological analyses were carried out in the lumbar spinal cord at peak disease and at 1 or 14 days post-treatment (dpt). Results: Exercised-GA treated animals demonstrated decreased astrocytic response in the spinal dorsal horn with an improvement in the paw print pressure. Exercised-DMF treated animals showed an increased microglial/macrophage response on both ventral and dorsal horn that were associated with clinical improvement and synaptic motoneuron inputs density. Conclusion: The present data suggest that prior regular exercise can modify the effects of pharmacological treatment administered after the first relapse in a murine model for MS.
Collapse
Affiliation(s)
- Danielle Bernardes
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
21
|
CD4+ αβ T cell infiltration into the leptomeninges of lumbar dorsal roots contributes to the transition from acute to chronic mechanical allodynia after adult rat tibial nerve injuries. J Neuroinflammation 2018; 15:81. [PMID: 29544518 PMCID: PMC5855984 DOI: 10.1186/s12974-018-1115-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Background Antigen-specific and MHCII-restricted CD4+ αβ T cells have been shown or suggested to play an important role in the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. However, it is still largely unknown where these T cells infiltrate along the somatosensory pathways transmitting mechanical allodynia to initiate the development of chronic mechanical allodynia after nerve injuries. Therefore, the purpose of this study was to ascertain the definite neuroimmune interface for these T cells to initiate the development of chronic mechanical allodynia after peripheral nerve injuries. Methods First, we utilized both chromogenic and fluorescent immunohistochemistry (IHC) to map αβ T cells along the somatosensory pathways for the transmission of mechanical allodynia after modified spared nerve injuries (mSNIs), i.e., tibial nerve injuries, in adult male Sprague-Dawley rats. We further characterized the molecular identity of these αβ T cells selectively infiltrating into the leptomeninges of L4 dorsal roots (DRs). Second, we identified the specific origins in lumbar lymph nodes (LLNs) for CD4+ αβ T cells selectively present in the leptomeninges of L4 DRs by two experiments: (1) chromogenic IHC in these lymph nodes for CD4+ αβ T cell responses after mSNIs and (2) fluorescent IHC for temporal dynamics of CD4+ αβ T cell infiltration into the L4 DR leptomeninges after mSNIs in prior lymphadenectomized or sham-operated animals to LLNs. Finally, following mSNIs, we evaluated the effects of region-specific targeting of these T cells through prior lymphadenectomy to LLNs and chronic intrathecal application of the suppressive anti-αβTCR antibodies on the development of mechanical allodynia by von Frey hair test and spinal glial or neuronal activation by fluorescent IHC. Results Our results showed that during the sub-acute phase after mSNIs, αβ T cells selectively infiltrate into the leptomeninges of the lumbar DRs along the somatosensory pathways responsible for transmitting mechanical allodynia. Almost all these αβ T cells are CD4 positive. Moreover, the temporal dynamics of CD4+ αβ T cell infiltration into the lumbar DR leptomeninges are specifically determined by LLNs after mSNIs. Prior lymphadenectomy to LLNs specifically reduces the development of mSNI-induced chronic mechanical allodynia. More importantly, intrathecal application of the suppressive anti-αβTCR antibodies reduces the development of mSNI-induced chronic mechanical allodynia. In addition, prior lymphadenectomy to LLNs attenuates mSNI-induced spinal activation of glial cells and PKCγ+ excitatory interneurons. Conclusions The noteworthy results here provide the first evidence that CD4+ αβ T cells selectively infiltrate into the DR leptomeninges of the somatosensory pathways transmitting mechanical allodynia and contribute to the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. Electronic supplementary material The online version of this article (10.1186/s12974-018-1115-7) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Rosen S, Ham B, Mogil JS. Sex differences in neuroimmunity and pain. J Neurosci Res 2017; 95:500-508. [PMID: 27870397 DOI: 10.1002/jnr.23831] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Differences in the prevalence of chronic pain in women vs. men are well known, and decades of laboratory experimentation have demonstrated that women are more sensitive to pain than are men. Attention has thus shifted to investigating mechanisms underlying such differences. Recent evidence suggests that neuroimmune modulation of pain may represent an important cause of sex differences. The current Review examines the evidence for gonadal hormone modulation of the immune system, immune system modulation of pain, and interactions that might help to explain sex differences in pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Rosen
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Boram Ham
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Jeffrey S Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Hung AL, Lim M, Doshi TL. Targeting cytokines for treatment of neuropathic pain. Scand J Pain 2017; 17:287-293. [PMID: 29229214 DOI: 10.1016/j.sjpain.2017.08.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuropathic pain is a challenging condition often refractory to existing therapies. An increasing number of studies have indicated that the immune system plays a crucial role in the mediation of neuropathic pain. Exploration of the various functions of individual cytokines in neuropathic pain will provide greater insight into the mechanisms of neuropathic pain and suggest potential opportunities to expand the repertoire of treatment options. METHODS A literature review was performed to assess the role of pro-inflammatory and anti-inflammatory cytokines in the development of neuropathic pain. Both direct and indirect therapeutic approaches that target various cytokines for pain were reviewed. The current understanding based on preclinical and clinical studies is summarized. RESULTS AND CONCLUSIONS In both human and animal studies, neuropathic pain has been associated with a pro-inflammatory state. Analgesic therapies involving direct manipulation of various cytokines and indirect methods to alter the balance of the immune system have been explored, although there have been few large-scale clinical trials evaluating the efficacy of immune modulators in the treatment of neuropathic pain. TNF-α is perhaps the widely studied pro-inflammatory cytokine in the context of neuropathic pain, but other pro-inflammatory (IL-1β, IL-6, and IL-17) and anti-inflammatory (IL-4, IL-10, TGF-β) signaling molecules are garnering increased interest. With better appreciation and understanding of the interaction between the immune system and neuropathic pain, novel therapies may be developed to target this condition.
Collapse
Affiliation(s)
- Alice L Hung
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tina L Doshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Sauer RS, Kirchner J, Yang S, Hu L, Leinders M, Sommer C, Brack A, Rittner HL. Blood-spinal cord barrier breakdown and pericyte deficiency in peripheral neuropathy. Ann N Y Acad Sci 2017; 1405:71-88. [DOI: 10.1111/nyas.13436] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Reine-Solange Sauer
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
| | - Juliane Kirchner
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
| | - Shaobing Yang
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Liu Hu
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Mathias Leinders
- Department of Neurology; University Hospital of Würzburg; Würzburg Germany
| | - Claudia Sommer
- Department of Neurology; University Hospital of Würzburg; Würzburg Germany
| | - Alexander Brack
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
| | - Heike L. Rittner
- Department of Anesthesiology and Critical Care; University Hospital of Würzburg; Würzburg Germany
| |
Collapse
|
25
|
Guan Z, Hellman J, Schumacher M. Contemporary views on inflammatory pain mechanisms: TRPing over innate and microglial pathways. F1000Res 2016; 5. [PMID: 27781082 PMCID: PMC5054801 DOI: 10.12688/f1000research.8710.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Tissue injury, whether by trauma, surgical intervention, metabolic dysfunction, ischemia, or infection, evokes a complex cellular response (inflammation) that is associated with painful hyperalgesic states. Although in the acute stages it is necessary for protective reflexes and wound healing, inflammation may persist well beyond the need for tissue repair or survival. Prolonged inflammation may well represent the greatest challenge mammalian organisms face, as it can lead to chronic painful conditions, organ dysfunction, morbidity, and death. The complexity of the inflammatory response reflects not only the inciting event (infection, trauma, surgery, cancer, or autoimmune) but also the involvement of heterogeneous cell types including neuronal (primary afferents, sensory ganglion, and spinal cord), non-neuronal (endothelial, keratinocytes, epithelial, and fibroblasts), and immune cells. In this commentary, we will examine 1.) the expression and regulation of two members of the transient receptor potential family in primary afferent nociceptors and their activation/regulation by products of inflammation, 2.) the role of innate immune pathways that drive inflammation, and 3.) the central nervous system’s response to injury with a focus on the activation of spinal microglia driving painful hyperalgesic states.
Collapse
Affiliation(s)
- Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Tashima R, Mikuriya S, Tomiyama D, Shiratori-Hayashi M, Yamashita T, Kohro Y, Tozaki-Saitoh H, Inoue K, Tsuda M. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury. Sci Rep 2016; 6:23701. [PMID: 27005516 PMCID: PMC4804310 DOI: 10.1038/srep23701] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI.
Collapse
Affiliation(s)
- Ryoichi Tashima
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satsuki Mikuriya
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Tomiyama
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Miho Shiratori-Hayashi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiro Yamashita
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuta Kohro
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetoshi Tozaki-Saitoh
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
27
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
28
|
Dengler EC, Alberti LA, Bowman BN, Kerwin AA, Wilkerson JL, Moezzi DR, Limanovich E, Wallace JA, Milligan ED. Improvement of spinal non-viral IL-10 gene delivery by D-mannose as a transgene adjuvant to control chronic neuropathic pain. J Neuroinflammation 2014; 11:92. [PMID: 24884664 PMCID: PMC4046049 DOI: 10.1186/1742-2094-11-92] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Peri-spinal subarachnoid (intrathecal; i.t.) injection of non-viral naked plasmid DNA encoding the anti-inflammatory cytokine, IL-10 (pDNA-IL-10) suppresses chronic neuropathic pain in animal models. However, two sequential i.t. pDNA injections are required within a discrete 5 to 72-hour period for prolonged efficacy. Previous reports identified phagocytic immune cells present in the peri-spinal milieu surrounding the i.t injection site that may play a role in transgene uptake resulting in subsequent IL-10 transgene expression. METHODS In the present study, we aimed to examine whether factors known to induce pro-phagocytic anti-inflammatory properties of immune cells improve i.t. IL-10 transgene uptake using reduced naked pDNA-IL-10 doses previously determined ineffective. Both the synthetic glucocorticoid, dexamethasone, and the hexose sugar, D-mannose, were factors examined that could optimize i.t. pDNA-IL-10 uptake leading to enduring suppression of neuropathic pain as assessed by light touch sensitivity of the rat hindpaw (allodynia). RESULTS Compared to dexamethasone, i.t. mannose pretreatment significantly and dose-dependently prolonged pDNA-IL-10 pain suppressive effects, reduced spinal IL-1β and enhanced spinal and dorsal root ganglia IL-10 immunoreactivity. Macrophages exposed to D-mannose revealed reduced proinflammatory TNF-α, IL-1β, and nitric oxide, and increased IL-10 protein release, while IL-4 revealed no improvement in transgene uptake. Separately, D-mannose dramatically increased pDNA-derived IL-10 protein release in culture supernatants. Lastly, a single i.t. co-injection of mannose with a 25-fold lower pDNA-IL-10 dose produced prolonged pain suppression in neuropathic rats. CONCLUSIONS Peri-spinal treatment with D-mannose may optimize naked pDNA-IL-10 transgene uptake for suppression of allodynia, and is a novel approach to tune spinal immune cells toward pro-phagocytic phenotype for improved non-viral gene therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erin D Milligan
- Department of Neurosciences, UNM School of Medicine, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
29
|
Peripheral role of cathepsin S in Th1 cell-dependent transition of nerve injury-induced acute pain to a chronic pain state. J Neurosci 2014; 34:3013-22. [PMID: 24553941 DOI: 10.1523/jneurosci.3681-13.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is increasing evidence that CD4(+) T-cell-dependent responses are associated with the maintenance of neuropathic pain. However, little is known about the precise mechanism(s) underlying the activation of CD4(+) T-cells. We herein show that inhibition of cathepsin S (CatS) activity, either through genetic deletion or via a pharmacological inhibitor, Z-Phe-Leu-COCHO (Z-FL), significantly attenuated the maintenance of tactile allodynia, splenic hypertrophy, increased number of splenic CD4(+) T-cells and the final cleavage step of the MHC class II-associated invariant chain following peripheral nerve injury. It was also noted that splenectomy significantly attenuated the peripheral nerve injury-induced tactile allodynia, whereas the adoptive transfer of splenic CD4(+) T-cells from neuropathic wild-type mice significantly increased the pain level of splenectomized wild-type or CatS(-/-) mice. Furthermore, CatS deficiency or Z-FL treatment also significantly inhibited the infiltration of CD4(+) T-cells that expressed interferon-γ (IFN-γ) in the dorsal spinal cord. Signal transducer and activator of transcription 1, a molecule downstream of IFN-γ receptor activation, was activated exclusively in microglia 7 d after peripheral nerve injury. Moreover, CatS deficiency, Z-FL treatment, or splenectomy significantly attenuated the proliferation of microglia 14 d after peripheral nerve injury. These results show a peripheral pivotal role of CatS in the development of neuropathic pain through the antigen-specific activation of CD4(+) T-cells. After activation, CD4(+) T-cells infiltrate into the dorsal spinal cord and secrete IFN-γ to reactivate microglia, which contribute to the transition of acute pain to a chronic pain state.
Collapse
|
30
|
Abstract
Reciprocal signalling between immunocompetent cells in the central nervous system (CNS) has emerged as a key phenomenon underpinning pathological and chronic pain mechanisms. Neuronal excitability can be powerfully enhanced both by classical neurotransmitters derived from neurons, and by immune mediators released from CNS-resident microglia and astrocytes, and from infiltrating cells such as T cells. In this Review, we discuss the current understanding of the contribution of central immune mechanisms to pathological pain, and how the heterogeneous immune functions of different cells in the CNS could be harnessed to develop new therapeutics for pain control. Given the prevalence of chronic pain and the incomplete efficacy of current drugs--which focus on suppressing aberrant neuronal activity--new strategies to manipulate neuroimmune pain transmission hold considerable promise.
Collapse
|
31
|
Draleau K, Maddula S, Slaiby A, Nutile-McMenemy N, De Leo J, Cao L. Phenotypic Identification of Spinal Cord-Infiltrating CD4 + T Lymphocytes in a Murine Model of Neuropathic Pain. ACTA ACUST UNITED AC 2014; Suppl 3:003. [PMID: 25143871 PMCID: PMC4136538 DOI: 10.4172/2167-0846.s3-003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuropathic pain is one of the most devastating kinds of chronic pain. Neuroinflammation has been shown to contribute to the development of neuropathic pain. We have previously demonstrated that lumbar spinal cord-infiltrating CD4+ T lymphocytes contribute to the maintenance of mechanical hypersensitivity in spinal nerve L5 transection (L5Tx), a murine model of neuropathic pain. Here, we further examined the phenotype of the CD4+ T lymphocytes involved in the maintenance of neuropathic pain-like behavior via intracellular flow cytometric analysis and explored potential interactions between infiltrating CD4+ T lymphocytes and spinal cord glial cells. RESULTS We consistently observed significantly higher numbers of T-Bet+, IFN-γ+, TNF-α+, and GM-CSF+, but not GATA3+ or IL-4+, lumbar spinal cord-infiltrating CD4+ T lymphocytes in the L5Tx group compared to the sham group at day 7 post-L5Tx. This suggests that the infiltrating CD4+ T lymphocytes expressed a pro-inflammatory type 1 phenotype (Th1). Despite the observation of CD4+ CD40 ligand (CD154)+ T lymphocytes in the lumbar spinal cord post-L5Tx, CD154 knockout (KO) mice did not display significant changes in L5Tx-induced mechanical hypersensitivity, indicating that T lymphocyte-microglial interaction through the CD154-CD40 pathway is not necessary for L5Tx-induced hypersensitivity. In addition, spinal cord astrocytic activation, represented by glial fibillary acidic protein (GFAP) expression, was significantly lower in CD4 KO mice compared to wild type (WT) mice at day 14 post-L5Tx, suggesting the involvement of astrocytes in the pronociceptive effects mediated by infiltrating CD4+ T lymphocytes. CONCLUSIONS In all, these data indicate that the maintenance of L5Tx-induced neuropathic pain is mostly mediated by Th1 cells in a CD154-independent manner via a mechanism that could involve multiple Th1 cytokines and astrocytic activation.
Collapse
Affiliation(s)
- Ks Draleau
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA
| | - S Maddula
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA
| | - A Slaiby
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA
| | - N Nutile-McMenemy
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Ja De Leo
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA ; Vice President of Academic Affairs, Professor of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02215, USA
| | - L Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, 04005, USA
| |
Collapse
|
32
|
Abstract
Neuropathic pain represents a major problem in clinical medicine because it causes debilitating suffering and is largely resistant to currently available analgesics. A characteristic of neuropathic pain is abnormal response to somatic sensory stimulation. Thus, patients suffering peripheral neuropathies may experience pain caused by stimuli which are normally nonpainful, such as simple touching of the skin or by changes in temperature, as well as exaggerated responses to noxious stimuli. Convincing evidence suggests that this hypersensitivity is the result of pain remaining centralized. In particular, at the first pain synapse in the dorsal horn of the spinal cord, the gain of neurons is increased and neurons begin to be activated by innocuous inputs. In recent years, it has become appreciated that a remote damage in the peripheral nervous system results in neuronal plasticity and changes in microglial and astrocyte activity, as well as infiltration of macrophages and T cells, which all contribute to central sensitization. Specifically, the release of pronociceptive factors such as cytokines and chemokines from neurons and non-neuronal cells can sensitize neurons of the first pain synapse. In this article we review the current evidence for the role of cytokines in mediating spinal neuron–non-neuronal cell communication in neuropathic pain mechanisms following peripheral nerve injury. Specific and selective control of cytokine-mediated neuronal–glia interactions results in attenuation of the hypersensitivity to both noxious and innocuous stimuli observed in neuropathic pain models, and may represent an avenue for future therapeutic intervention.
Collapse
Affiliation(s)
- Anna K Clark
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | | | |
Collapse
|
33
|
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013; 716:106-19. [PMID: 23500198 DOI: 10.1016/j.ejphar.2013.01.072] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Glia plays a crucial role in the maintenance of neuronal homeostasis in the central nervous system. The microglial production of immune factors is believed to play an important role in nociceptive transmission. Pain may now be considered a neuro-immune disorder, since it is known that the activation of immune and immune-like glial cells in the dorsal root ganglia and spinal cord results in the release of both pro- and anti-inflammatory cytokines, as well as algesic and analgesic mediators. In this review we presented an important role of cytokines (IL-1alfa, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-15, IL-18, TNFalpha, IFNgamma, TGF-beta 1, fractalkine and CCL2); complement components (C1q, C3, C5); metaloproteinases (MMP-2,-9) and many other factors, which become activated on spinal cord and DRG level under neuropathic pain. We discussed the role of the immune system in modulating chronic pain. At present, unsatisfactory treatment of neuropathic pain will seek alternative targets for new drugs and it is possible that anti-inflammatory factors like IL-10, IL-4, IL-1alpha, TGF-beta 1 would fulfill this role. Another novel approach for controlling neuropathic pain can be pharmacological attenuation of glial and immune cell activation. It has been found that propentofylline, pentoxifylline, minocycline and fluorocitrate suppress the development of neuropathic pain. The other way of pain control can be the decrease of pro-nociceptive agents like transcription factor synthesis (NF-kappaB, AP-1); kinase synthesis (MEK, p38MAPK, JNK) and protease activation (cathepsin S, MMP9, MMP2). Additionally, since it is known that the opioid-induced glial activation opposes opioid analgesia, some glial inhibitors, which are safe and clinically well tolerated, are proposed as potential useful ko-analgesic agents for opioid treatment of neuropathic pain. This review pointed to some important mechanisms underlying the development of neuropathic pain, which led to identify some possible new approaches to the treatment of neuropathic pain, based on the more comprehensive knowledge of the interaction between the nervous system and glial and immune cells.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| | | | | | | | | |
Collapse
|
34
|
Billetta R, Ghahramani N, Morrow O, Prakken B, de Jong H, Meschter C, Lanza P, Albani S. Epitope-specific immune tolerization ameliorates experimental autoimmune encephalomyelitis. Clin Immunol 2012; 145:94-101. [DOI: 10.1016/j.clim.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/27/2012] [Accepted: 08/07/2012] [Indexed: 01/04/2023]
|
35
|
Poittevin M, Deroide N, Azibani F, Delcayre C, Giannesini C, Levy BI, Pocard M, Kubis N. Glatiramer Acetate administration does not reduce damage after cerebral ischemia in mice. J Neuroimmunol 2012; 254:55-62. [PMID: 23026222 DOI: 10.1016/j.jneuroim.2012.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/23/2012] [Accepted: 09/07/2012] [Indexed: 11/15/2022]
Abstract
Inflammation plays a key role in ischemic stroke pathophysiology: microglial/macrophage cells and type-1 helper cells (Th1) seem deleterious, while type-2 helper cells (Th2) and regulatory T cells (Treg) seem protective. CD4 Th0 differentiation is modulated by microglial cytokine secretion. Glatiramer Acetate (GA) is an immunomodulatory drug that has been approved for the treatment of human multiple sclerosis by means of a number of mechanisms: reduced microglial activation and pro-inflammatory cytokine production, Th0 differentiation shifting from Th2 to Th2 and Treg with anti-inflammatory cytokine production and increased neurogenesis. We induced permanent (pMCAo) or transient middle cerebral artery occlusion (tMCAo) and GA (2 mg) or vehicle was injected subcutaneously immediately after cerebral ischemia. Mice were sacrificed at D3 to measure neurological deficit, infarct volume, microglial cell density and qPCR of TNFα and IL-1β (pro-inflammatory microglial cytokines), IFNγ (Th2 cytokine), IL-4 (Th2 cytokine), TGFβ and IL-10 (Treg cytokines), and at D7 to evaluate neurological deficit, infarct volume and neurogenesis assessment. We showed that in GA-treated pMCAo mice, infarct volume, microglial cell density and cytokine secretion were not significantly modified at D3, while neurogenesis was enhanced at D7 without significant infarct volume reduction. In GA-treated tMCAo mice, microglial pro-inflammatory cytokines IL-1β and TNFα were significantly decreased without modification of microglial/macrophage cell density, cytokine secretion, neurological deficit or infarct volume at D3, or modification of neurological deficit, neurogenesis or infarct volume at D7. In conclusion, Glatiramer Acetate administered after cerebral ischemia does not reduce infarct volume or improve neurological deficit in mice despite a significant increase in neurogenesis in pMCAo and a microglial pro-inflammatory cytokine reduction in tMCAo.
Collapse
Affiliation(s)
- Marine Poittevin
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, F-75475 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Calvo M, Dawes JM, Bennett DLH. The role of the immune system in the generation of neuropathic pain. Lancet Neurol 2012; 11:629-42. [PMID: 22710756 DOI: 10.1016/s1474-4422(12)70134-5] [Citation(s) in RCA: 335] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Persistent pain is a sequela of several neurological conditions with a primary immune basis, such as Guillain-Barré syndrome and multiple sclerosis. Additionally, diverse forms of injury to the peripheral or the central nervous systems--whether traumatic, metabolic, or toxic--result in substantial recruitment and activation of immune cells. This response involves the innate immune system, but evidence also exists of T-lymphocyte recruitment, and in some patient cohorts antibodies to neuronal antigens have been reported. Mediators released by immune cells, such as cytokines, sensitise nociceptive signalling in the peripheral and central nervous systems. Preclinical data suggest an immune pathogenesis of neuropathic pain, but clinical evidence of a central role of the immune system is less clear. An important challenge for the future is to establish to what extent this immune response initiates or maintains neuropathic pain in patients and thus whether it is amenable to therapy.
Collapse
Affiliation(s)
- Margarita Calvo
- Department of Neurorestoration, Wolfson CARD, King's College London, London, UK
| | | | | |
Collapse
|
37
|
Clark AK, Grist J, Al-Kashi A, Perretti M, Malcangio M. Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. ACTA ACUST UNITED AC 2011; 64:2038-47. [PMID: 22213084 DOI: 10.1002/art.34351] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The induction of rheumatoid arthritis (RA) by active and passive immunization of mice results in the development of pain at the same time as the swelling and inflammation, with both peripheral and central sensitization contributing to joint pain. The purpose of this study was to examine the development of pain in the rat model of collagen-induced arthritis (CIA) and to evaluate the contribution of neuroimmune interactions to established arthritis pain. METHODS Mechanical hypersensitivity was assessed in female Lewis rats before and up to 18 days after induction of CIA by immunization with type II collagen. The effect of selective inhibitors of microglia were then evaluated by prolonged intrathecal delivery of a cathepsin S (CatS) inhibitor and a fractalkine (FKN) neutralizing antibody, from day 11 to day 18 following immunization. RESULTS Rats with CIA developed significant mechanical hypersensitivity, which started on day 9, before the onset of clinical signs of arthritis. Mechanical hypersensitivity peaked with the severity of the disease, when significant microglial and astrocytic responses, alongside T cell infiltration, were observed in the spinal cord. Intrathecal delivery of microglial inhibitors, a CatS inhibitor, or an FKN neutralizing antibody attenuated mechanical hypersensitivity and spinal microglial response in rats with CIA. CONCLUSION The inhibition of microglial targets by centrally penetrant CatS inhibitors and CX(3) CR1 receptor antagonists represents a potential therapeutic avenue for the treatment of pain in RA.
Collapse
|
38
|
Üçeyler N, Topuzoğlu T, Schiesser P, Hahnenkamp S, Sommer C. IL-4 deficiency is associated with mechanical hypersensitivity in mice. PLoS One 2011; 6:e28205. [PMID: 22164245 PMCID: PMC3229527 DOI: 10.1371/journal.pone.0028205] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/03/2011] [Indexed: 12/27/2022] Open
Abstract
Interleukin-4 (IL-4) is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko) mice to characterize their pain behavior before and after chronic constriction injury (CCI) of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS) of IL-4 ko mice in comparison with wildtype (wt) mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001), while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF), IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001) 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014). Remarkably, CCI induced TNF (p<0.01), IL-1β (p<0.05), IL-10 (p<0.05), and IL-13 (p<0.001) gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.
Collapse
Affiliation(s)
- Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
39
|
Clark AK, Malcangio M. Microglial signalling mechanisms: Cathepsin S and Fractalkine. Exp Neurol 2011; 234:283-92. [PMID: 21946268 DOI: 10.1016/j.expneurol.2011.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/26/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022]
Abstract
A recent major conceptual advance has been the recognition of the importance of immune system-neuron interactions in the modulation of spinal pain processing. In particular, pro-inflammatory mediators secreted by immune competent cells such as microglia modulate nociceptive function in the injured CNS and following peripheral nerve damage. Chemokines play a pivotal role in mediating neuronal-microglial communication which leads to increased nociception. Here we examine the evidence that one such microglial mediator, the lysosomal cysteine protease Cathepsin S (CatS), is critical for the maintenance of neuropathic pain via cleavage of the transmembrane chemokine Fractalkine (FKN). Both CatS and FKN mediate critical physiological functions necessary for immune regulation. As key mediators of homeostatic functions it is not surprising that imbalance in these immune processes has been implicated in autoimmune disorders including Multiple Sclerosis and Rheumatoid Arthritis, both of which are associated with chronic pain. Thus, impairment of the CatS/FKN signalling pair constitutes a novel therapeutic approach for the treatment of chronic pain.
Collapse
Affiliation(s)
- Anna K Clark
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | |
Collapse
|
40
|
The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol 2011; 234:271-82. [PMID: 21893056 DOI: 10.1016/j.expneurol.2011.08.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 12/23/2022]
Abstract
Microglia are the resident macrophages in the central nervous system (CNS). Any insult to the CNS homeostasis will induce a rapid change in microglia morphology, gene expression profile and functional behaviour. These responses of microglia have been collectively known as 'microgliosis'. Interestingly, damage to the nervous system outside the CNS, such as axotomy of a peripheral nerve, can lead to microgliosis in the spinal cord. There is a variation in the degree of microgliosis depending on the model of nerve injury employed for instance this response is more marked following traumatic nerve injury than in models of chemotherapy induced neuropathy. Following peripheral nerve injury nociceptive inputs from sensory neurons appear to be critical in triggering the development of spinal microgliosis. A number of signalling pathways including growth factors such as Neuregulin-1, matrix metalloproteases such as MMP-9 and multiple chemokines enable direct communication between injured primary afferents and microglia. In addition, we describe a group of mediators which although not demonstrably shown to be released from neurons are known to modulate microglial phenotype. There is a great functional diversity of the microglial response to peripheral nerve injury which includes: Cellular migration, proliferation, cytokine release, phagocytosis, antigen presentation and recruitment of T cells. It should also be noted that in certain contexts microglia may have a role in the resolution of neuro-inflammation. Although there is still no direct evidence demonstrating that spinal microglia have a role in neuropathic pain in humans, these patients present a pro-inflammatory cytokine profile and it is a reasonable hypothesis that these cells may contribute to this inflammatory response. Modulating microglial functions offers a novel therapeutic opportunity following nerve injury which ideally would involve reducing the pro-inflammatory nature of these cells whilst retaining their potential beneficial functions.
Collapse
|