1
|
Wu C, Wang W, Li R, Su Y, Lv H, Qin S, Zheng Z. Risk factors for mild cognitive impairment in patients with age-related hearing loss: a meta-analysis. Braz J Otorhinolaryngol 2024; 90:101467. [PMID: 39079457 PMCID: PMC11338943 DOI: 10.1016/j.bjorl.2024.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 08/25/2024] Open
Abstract
OBJECTIVES One of the most common sensory impairments in the elderly is age-related hearing loss, and individuals with this condition have a higher risk of mild cognitive impairment than the overall aged population. The purpose of this study was to conduct a systematic review of the literature in order to evaluate the evidence supporting the hypothesis that mild cognitive impairment may be developed in patients with age-related hearing loss. METHODS The PRISMA principles were followed when searching the databases of the China Knowledge Network, Wanfang, China Biomedical Literature Database, Pub Med, Cochrane Library, Embase, and Web of Science. Two investigators independently carried out the quality assessment, data extraction, and literature review of the eligible studies. Stata 17.0 was used to finish the statistical analysis and descriptive results. RESULTS A total of 13 articles containing 2,222,036 individuals who were evaluated for demographic traits, factors associated with age-related hearing loss, vascular neurologic factors, and psychological factors were included after 2166 search records were found in the database. In patients with age-related hearing loss, eleven factors were found to be risk factors for the development of mild cognitive impairment: age (OR = 1.63; 95% CI 1.09-2.43), male (OR = 1.29; 95% CI 1.14-1.47), degree of hearing loss (OR = 1.35; 95% CI 1.03-1.75), not wearing hearing aids (OR = 1.56; 95% CI 1.37-1.79), cerebrovascular disease (OR = 1.41; 95% CI 1.17-1.69), cardiovascular disease (OR = 1.29; 95% CI 1.07-1.55), diabetes mellitus (OR = 1.28; 95% CI 1.20-1.35), head injury (OR = 1.22; 95% CI 1.13-1.33), alcohol consumption (OR = 1.28; 95% CI 1.14-1.43), and tobacco use (OR = 1.19; 95% CI 1.14-1.25), and depression (OR = 1.63; 95% CI 1.47-1.81). CONCLUSION Caregivers can customize care strategies to decrease the occurrence of mild cognitive impairment in elderly deaf patients by considering demographic traits, factors associated with age-related hearing loss, vascular-neurologic factors, and psychological factors.
Collapse
Affiliation(s)
- Chenxingzi Wu
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wenjuan Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ruilin Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Yuhong Su
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Huiling Lv
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Shuhong Qin
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhanhang Zheng
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
2
|
You DJ, Gorman BM, Goshi N, Hum NR, Sebastian A, Kim YH, Enright HA, Buchholz BA. Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells. Int J Mol Sci 2024; 25:10288. [PMID: 39408618 PMCID: PMC11476751 DOI: 10.3390/ijms251910288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Collapse
Affiliation(s)
- Dorothy J. You
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bria M. Gorman
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Noah Goshi
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Heather A. Enright
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
3
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
4
|
Luo J, Xu X, Sun Y, Lu X, Zhao L. Association of composite dietary antioxidant index with depression and all-cause mortality in middle-aged and elderly population. Sci Rep 2024; 14:9809. [PMID: 38684752 PMCID: PMC11058273 DOI: 10.1038/s41598-024-60322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Current research has shown an increasing acceptance of interventions for depression through dietary modifications. However, whether composite dietary antioxidant index (CDAI) is associated with depression and all-cause mortality in middle-aged and elderly population remains unknown. This study aimed to explore those associations in American middle-aged and elderly population. Weighted logistic regression models and weighted Cox proportional hazard regression models were used to assess the association of CDAI, covariates, depression, and all-cause mortality, respectively. The stability of the results was also determined by a linear trend test based on CDAI quintiles. Restricted cubic spline curves were employed to test for non-linear relationships. In the model adjusted for all covariates, significant associations were found with the ORs (95% CI) for CDAI and depression [0.77 (0.67, 0.89)] and the HRs (95% CI) for CDAI with all-cause mortality[0.91 (0.83, 1.00)]. Upon conducting restricted cubic spline curves, we found that the association between CDAI and depression was linear, whereas the association between CDAI and all-cause mortality was non-linear with an inflection point of -0.19. Statistical significance was only found before the inflection point. In this study of middle-aged and elderly Americans, CDAI was linearly negatively associated with depression and non-linearly negatively associated with all-cause mortality.
Collapse
Affiliation(s)
- Juanjuan Luo
- University City Hospital, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Xiying Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyan Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xixue Lu
- Neck Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China.
| | - Leiyong Zhao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
5
|
Yeshaw Y, Madakkatel I, Mulugeta A, Lumsden A, Hyppönen E. Uncovering Predictors of Low Hippocampal Volume: Evidence from a Large-Scale Machine-Learning-Based Study in the UK Biobank. Neuroepidemiology 2024; 58:369-382. [PMID: 38560977 PMCID: PMC11449190 DOI: 10.1159/000538565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Hippocampal atrophy is an established biomarker for conversion from the normal ageing process to developing cognitive impairment and dementia. This study used a novel hypothesis-free machine-learning approach, to uncover potential risk factors of lower hippocampal volume using information from the world's largest brain imaging study. METHODS A combination of machine learning and conventional statistical methods were used to identify predictors of low hippocampal volume. We run gradient boosting decision tree modelling including 2,891 input features measured before magnetic resonance imaging assessments (median 9.2 years, range 4.2-13.8 years) using data from 42,152 dementia-free UK Biobank participants. Logistic regression analyses were run on 87 factors identified as important for prediction based on Shapley values. False discovery rate-adjusted p value <0.05 was used to declare statistical significance. RESULTS Older age, male sex, greater height, and whole-body fat-free mass were the main predictors of low hippocampal volume with the model also identifying associations with lung function and lifestyle factors including smoking, physical activity, and coffee intake (corrected p < 0.05 for all). Red blood cell count and several red blood cell indices such as haemoglobin concentration, mean corpuscular haemoglobin, mean corpuscular volume, mean reticulocyte volume, mean sphered cell volume, and red blood cell distribution width were among many biomarkers associated with low hippocampal volume. CONCLUSION Lifestyles, physical measures, and biomarkers may affect hippocampal volume, with many of the characteristics potentially reflecting oxygen supply to the brain. Further studies are required to establish causality and clinical relevance of these findings.
Collapse
Affiliation(s)
- Yigizie Yeshaw
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia,
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia,
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia,
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia,
| | - Iqbal Madakkatel
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anwar Mulugeta
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa, Ethiopia
| | - Amanda Lumsden
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Kopa-Stojak PN, Pawliczak R. Comparison of the effects of active and passive smoking of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response markers. A systematic review. Inhal Toxicol 2024; 36:75-89. [PMID: 38394073 DOI: 10.1080/08958378.2024.2319315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES This work attempts to summarize current knowledge on the effects of active and passive smoking of cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response mediators, and on their possible impact on chronic obstructive pulmonary disease development. MATERIALS AND METHODS The literature was searched by the terms: 'smoking', 'active smoking', 'passive smoking', 'main-stream smoke', 'side-stream smoke', 'secondhand smoke', 'cigarette' 'THP', 'tobacco heating product', 'ENDS', 'electronic nicotine delivery system', 'e-cigarette', 'electronic cigarette', oxidative stress', inflammatory response' and 'gene expression'. RESULTS Cigarette smoking (active and passive) induces oxidative stress and inflammatory response in the airways. We present the effect of active smoking of e-cigarettes (EC) and heat-not-burn (HnB) products on the increased expression and secretion of oxidative stress and inflammatory response markers. However, there is only a limited number of studies on the effect of their second-hand smoking, and those available mainly describe aerosol composition. DISCUSSION The literature provides data which confirm that active and passive cigarette smoking induces oxidative stress and inflammatory response in the airways and is a key risk factor of COPD development. Currently, there is a limited number of data about ENDS and THP active and passive smoking effects on the health of smokers and never-smokers. It is particularly important to assess the effect of such products during long-term use by never-smokers who choose them as the first type of cigarettes, and for never-smokers who are passively exposed to their aerosol.
Collapse
Affiliation(s)
- Paulina Natalia Kopa-Stojak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
De Luca SN, Vlahos R. Targeting accelerated pulmonary ageing to treat chronic obstructive pulmonary disease-induced neuropathological comorbidities. Br J Pharmacol 2024; 181:3-20. [PMID: 37828646 PMCID: PMC10952708 DOI: 10.1111/bph.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable health burden, ranking as the third leading cause of death worldwide, mainly driven by cigarette smoking. COPD is characterised by persistent airway inflammation, lung function decline and premature ageing with the presence of pulmonary senescent cells. This review proposes that cellular senescence, a state of stable cell cycle arrest linked to ageing, induced by inflammation and oxidative stress in COPD, extends beyond the lungs and affects the systemic circulation. This pulmonary senescent profile will reach other organs via extracellular vesicles contributing to brain inflammation and damage, and increasing the risk of neurological comorbidities, such as stroke, cerebral small vessel disease and Alzheimer's disease. The review explores the role of cellular senescence in COPD-associated brain conditions and investigates the relationship between cellular senescence and circadian rhythm in COPD. Additionally, it discusses potential therapies, including senomorphic and senolytic treatments, as novel strategies to halt or improve the progression of COPD.
Collapse
Affiliation(s)
- Simone N. De Luca
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Sun Q, Wang H, Yang M, Xia H, Wu Y, Liu Q, Tang H. miR-153-3p via PIK3R1 Is Involved in Cigarette Smoke-Induced Neurotoxicity in the Brain. TOXICS 2023; 11:969. [PMID: 38133370 PMCID: PMC10747656 DOI: 10.3390/toxics11120969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Cigarettes contain various chemicals that cause damage to nerve cells. Exposure to cigarette smoke (CS) causes insulin resistance (IR) in nerve cells. However, the mechanisms for a disorder in the cigarette-induced insulin signaling pathway and in neurotoxicity remain unclear. Therefore, we evaluated, by a series of pathology analyses and behavioral tests, the neurotoxic effects of chronic exposure to CS on C57BL/6 mice. Mice exposed to CS with more than 200 mg/m3 total particulate matter (TPM) exhibited memory deficits and cognitive impairment. Pathological staining of paraffin sections of mouse brain tissue revealed that CS-exposed mice had, in the brain, neuronal damage characterized by thinner pyramidal and granular cell layers and fewer neurons. Further, the exposure of SH-SY5Y cells to cigarette smoke extract (CSE) resulted in diminished insulin sensitivity and reduced glucose uptake in a dose-dependent fashion. The PI3K/GSK3 insulin signaling pathway is particularly relevant to neurotoxicity. microRNAs are involved in the PI3K/GSK3β/p-Tau pathway, and we found that cigarette exposure activates miR-153-3p, decreases PI3K regulatory subunits PIK3R1, and induces Tau hyperphosphorylation. Exposure to an miR-153 inhibitor or to a PI3K inhibitor alleviated the reduced insulin sensitivity caused by CS. Therefore, our results indicate that miR-153-3p, via PIK3R1, causes insulin resistance in the brain, and is involved in CS-induced neurotoxicity.
Collapse
Affiliation(s)
- Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Mingxue Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| |
Collapse
|
9
|
Mamsharifi P, Farokhi B, Hajipoor-Taziani R, Alemi F, Hazegh P, Masoumzadeh S, Jafari L, Ghaderi A, Ghadami Dehkohneh S. Nano-curcumin effects on nicotine dependence, depression, anxiety and metabolic parameters in smokers: A randomized double-blind clinical study. Heliyon 2023; 9:e21249. [PMID: 37954269 PMCID: PMC10637885 DOI: 10.1016/j.heliyon.2023.e21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background Smoking is clearly associated with metabolic profiles/abnormalities, psychological dysfunction, and symptoms of nicotine dependence. Nano-Curcumin (Nano-CUR) is a medicinal herb with antianxiety, antioxidant antidepressant-like effects, and anti-inflammatory properties. This RCT aimed to determine the therapeutic effects of Nano-CUR in smokers on clinical symptoms and metabolic parameters. Methods This trial was conducted on 70 participants with cigarette smoking. Smokers in two arms received soft gel capsules Nano-CUR 80 mg/daily for 3 months (n = 35) and placebo (n = 35), respectively. Primary outcomes (Nicotine dependence syndrome scale, depression, and anxiety beck score), and secondary outcomes (glycemic, lipid, stress oxidative, and inflammation profiles) were analyzed before and 3-months after the intervention in smokers. Results Nano-CUR supplementation significantly decreased nitric oxide, malondialdehyde, and C-reactive protein levels (P < 0.05), compared to the control. Furthermore, no significant effect change was shown in nicotine dependence syndrome, depression, anxiety, and other metabolic parameters (p > 0.05). Conclusion Nano-CUR intake may have favorable effects on C-reactive protein, malondialdehyde, and nitric oxide in subjects with cigarette smoking. More RCT are required to evaluate the effectiveness of Nano-CUR supplementations in smokers in order to reject or support these conclude.
Collapse
Affiliation(s)
- Peyman Mamsharifi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Psychology, Allameh Tabataba'i University, Tehran, Iran
| | - Bahareh Farokhi
- Department of Clinical Psychology, Allameh Tabataba'i University, Tehran, Iran
| | - Raha Hajipoor-Taziani
- Department of General Psychology, Islamic Azad University of Qeshm Branch, Qeshm, Iran
| | - Fatemeh Alemi
- Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pooya Hazegh
- Department of Psychiatry, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Leila Jafari
- Department of Addiction Studies, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Ghaderi
- Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
- Department of Addiction Studies, School of Medical, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghadami Dehkohneh
- Department of Pharmacy, Acharya BM ready college of Pharmacy, Rajive Gandhi University of Health Sciences, Banglore Karnataka, India
| |
Collapse
|
10
|
Seo YS, Park JM, Kim JH, Lee MY. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants (Basel) 2023; 12:1732. [PMID: 37760035 PMCID: PMC10525535 DOI: 10.3390/antiox12091732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Smoking is recognized as a significant risk factor for numerous disorders, including cardiovascular diseases, respiratory conditions, and various forms of cancer. While the exact pathogenic mechanisms continue to be explored, the induction of oxidative stress via the production of excess reactive oxygen species (ROS) is widely accepted as a primary molecular event that predisposes individuals to these smoking-related ailments. This review focused on how cigarette smoke (CS) promotes ROS formation rather than the pathophysiological repercussions of ROS and oxidative stress. A comprehensive analysis of existing studies revealed the following key ways through which CS imposes ROS burden on biological systems: (1) ROS, as well as radicals, are intrinsically present in CS, (2) CS constituents generate ROS through chemical reactions with biomolecules, (3) CS stimulates cellular ROS sources to enhance production, and (4) CS disrupts the antioxidant system, aggravating the ROS generation and its functions. While the evidence supporting these mechanisms is chiefly based on in vitro and animal studies, the direct clinical relevance remains to be fully elucidated. Nevertheless, this understanding is fundamental for deciphering molecular events leading to oxidative stress and for developing intervention strategies to counter CS-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (Y.-S.S.); (J.-M.P.); (J.-H.K.)
| |
Collapse
|
11
|
Liu D, Yao L, Ding X, Zhou H. Multi-omics immune regulatory mechanisms in lung adenocarcinoma metastasis and survival time. Comput Biol Med 2023; 164:107333. [PMID: 37586202 DOI: 10.1016/j.compbiomed.2023.107333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer. Despite previous research on immune mechanisms and related molecules in LUAD, the specific regulatory mechanisms of these molecules in the immune microenvironment remain unclear. Furthermore, the impact of regulatory genes or RNA on LUAD metastasis and survival time is yet to be understood. To address these gaps, we collected a substantial amount of data, including 17,226 gene expression profiles from 1,018 samples, 370,640 methylation sites from 461 samples, and 248 miRNAs from 513 samples. Our aim was to explore the genes, miRNAs, and methylation sites associated with LUAD progression. Leveraging the regulatory functions of miRNAs and methylation sites, we identified target and regulated genes. Through the utilization of LASSO and survival analysis, we pinpointed 22 key genes that play pivotal roles in the immune regulatory mechanism of LUAD. Notably, the expression levels of these 22 genes demonstrated significant discriminatory power in predicting LUAD patient survival time. Additionally, our deep learning model accurately predicted distant metastasis in LUAD patients using the expression levels of these genes. Further pathway enrichment analysis revealed that these 22 genes are significantly enriched in pathways closely linked to LUAD progression. Through Immune Infiltration Assay, we observed that T cell CD4 memory resting, monocytes, and macrophages.M2 were the three most abundant cell types in the immune microenvironment of LUAD. These cells are known to play crucial roles in tumor growth, invasion, and metastasis. Single-cell data analysis further validated the functional significance of these genes, indicating their involvement not only in immune cells but also in epithelial cells, showcasing significant differential expression. Overall, this study sheds light on the regulatory mechanisms underlying the immune microenvironment of LUAD by identifying key genes associated with LUAD progression. The findings provide insights into potential prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Dan Liu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lulu Yao
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaolei Ding
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Huan Zhou
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Couch C, Alawieh AM, Toutonji A, Atkinson C, Tomlinson S. Evaluating the comorbidities of age and cigarette smoking on stroke outcomes in the context of anti-complement mitigation strategies. Front Immunol 2023; 14:1161051. [PMID: 37223091 PMCID: PMC10200924 DOI: 10.3389/fimmu.2023.1161051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
Multiple neuroprotective agents have shown beneficial effects in rodent models of stroke, but they have failed to translate in the clinic. In this perspective, we consider that a likely explanation for this failure, at least in part, is that there has been inadequate assessment of functional outcomes in preclinical stroke models, as well the use of young healthy animals that are not representative of clinical cohorts. Although the impact of older age and cigarette smoking comorbidities on stroke outcomes is well documented clinically, the impact of these (and other) stroke comorbidities on the neuroinflammatory response after stroke, as well as the response to neuroprotective agents, remains largely unexplored. We have shown that a complement inhibitor (B4Crry), that targets specifically to the ischemic penumbra and inhibits complement activation, reduces neuroinflammation and improves outcomes following murine ischemic stroke. For this perspective, we discuss the impact of age and smoking comorbidities on outcomes after stroke, and we experimentally assess whether increased complement activation contributes to worsened acute outcomes with these comorbidities. We found that the pro-inflammatory effects of aging and smoking contribute to worse stroke outcomes, and these effects are mitigated by complement inhibition.
Collapse
Affiliation(s)
- Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Ali M. Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson Veteran's Affairs (VA) Medical Center, Charleston, SC, United States
| |
Collapse
|
13
|
Wetherill RR, Doot RK, Young AJ, Lee H, Schubert EK, Wiers CE, Leone FT, Mach RH, Kranzler HR, Dubroff JG. Molecular Imaging of Pulmonary Inflammation in Users of Electronic and Combustible Cigarettes: A Pilot Study. J Nucl Med 2023; 64:797-802. [PMID: 36657981 PMCID: PMC10152129 DOI: 10.2967/jnumed.122.264529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Electronic cigarette (EC) use has increased dramatically, particularly among adolescents and young adults, and, like cigarette use, can cause pulmonary inflammation and increase the risk of lung disease. Methods: This preliminary study used PET with 18F-6-(1/2)(2-fluoro-propyl)-4-methylpyridin-2-amine (18F-NOS) to quantify inducible nitric oxide synthase expression to characterize oxidative stress and inflammation in the lungs in vivo in 3 age- and sex-matched groups: 5 EC users, 5 cigarette smokers, and 5 controls who had never smoked or vaped. Results: EC users showed greater 18F-NOS nondisplaceable binding potential (BPND) than cigarette smokers (P = 0.03) and controls (P = 0.01), whereas BPND in cigarette smokers did not differ from that in controls (P > 0.1). 18F-NOS lung tissue delivery and inducible nitric oxide synthase distribution volume did not significantly differ among groups. Although there were no group differences in peripheral inflammatory biomarker concentrations, 18F-NOS BPND correlated with the proinflammatory cytokine tumor necrosis factor-α concentrations (rs = 0.87, P = 0.05) in EC users. Additionally, when EC users and cigarette smokers were pooled together, number of vaping episodes or cigarettes per day correlated with interleukin-6 levels (rs = 0.86, P = 0.006). Conclusion: This is the first PET imaging study to compare lung inflammation between EC and cigarette users in vivo. We found preliminary evidence that EC users have greater pulmonary inflammation than cigarette smokers and controls, with a positive association between pulmonary and peripheral measures of inflammation.
Collapse
Affiliation(s)
- Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erin K Schubert
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frank T Leone
- Comprehensive Smoking Treatment Program, Penn Lung Center, Philadelphia, Pennsylvania; and
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Crescenz VAMC, Philadelphia, Pennsylvania
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Saaoud F, Shao Y, Cornwell W, Wang H, Rogers TJ, Yang X. Cigarette Smoke Modulates Inflammation and Immunity via Reactive Oxygen Species-Regulated Trained Immunity and Trained Tolerance Mechanisms. Antioxid Redox Signal 2023; 38:1041-1069. [PMID: 36017612 PMCID: PMC10171958 DOI: 10.1089/ars.2022.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Significance: Cigarette smoke (CS) is a prominent cause of morbidity and death and poses a serious challenge to the current health care system worldwide. Its multifaceted roles have led to cardiovascular, respiratory, immunological, and neoplastic diseases. Recent Advances: CS influences both innate and adaptive immunity and regulates immune responses by exacerbating pathogenic immunological responses and/or suppressing defense immunity. There is substantial evidence pointing toward a critical role of CS in vascular immunopathology, but a comprehensive and up-to-date review is lacking. Critical Issues: This review aims to synthesize novel conceptual advances on the immunomodulatory action of CS with a focus on the cardiovascular system from the following perspectives: (i) the signaling of danger-associated molecular pattern (DAMP) receptors contributes to CS modulation of inflammation and immunity; (ii) CS reprograms immunometabolism and trained immunity-related metabolic pathways in innate immune cells and T cells, which can be sensed by the cytoplasmic (cytosolic and non-nuclear organelles) reactive oxygen species (ROS) system in vascular cells; (iii) how nuclear ROS drive CS-promoted DNA damage and cell death pathways, thereby amplifying inflammation and immune responses; and (iv) CS induces endothelial cell (EC) dysfunction and vascular inflammation to promote cardiovascular diseases (CVDs). Future Directions: Despite significant progress in understanding the cellular and molecular mechanisms linking CS to immunity, further investigations are warranted to elucidate novel mechanisms responsible for CS-mediated immunopathology of CVDs; in particular, the research in redox regulation of immune functions of ECs and their fate affected by CS is still in its infancy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - William Cornwell
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology & Inflammation, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Centers, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas J. Rogers
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology & Inflammation, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
- Metabolic Disease Research and Thrombosis Research Centers, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Hamadi N, Beegam S, Zaaba NE, Elzaki O, Altamimi MA, Nemmar A. Neuroinflammation, Oxidative Stress, Apoptosis, Microgliosis and Astrogliosis in the Cerebellum of Mice Chronically Exposed to Waterpipe Smoke. Biomedicines 2023; 11:biomedicines11041104. [PMID: 37189722 DOI: 10.3390/biomedicines11041104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Waterpipe smoking (WPS) is prevalent in Asian and Middle Eastern countries and has recently gained worldwide popularity, especially among youth. WPS has potentially harmful chemicals and is associated with a wide range of adverse effects on different organs. However, little is known regarding the impact of WPS inhalation on the brain and especially on the cerebellum. Presently, we aimed at investigating inflammation, oxidative stress and apoptosis as well as microgliosis and astrogliosis in the cerebellum of BALB/C mice chronically (6 months) exposed to WPS compared with air-exposed mice (control). WPS inhalation augmented the concentrations of proinflammatory cytokines tumor necrosis factor, interleukin (IL)-6 and IL-1β in cerebellar homogenates. Likewise, WPS increased oxidative stress markers including 8-isoprostane, thiobarbituric acid reactive substances and superoxide dismutase. In addition, compared with the air-exposed group, WPS caused an increase in the oxidative DNA damage marker, 8-hydroxy-2′-deoxyguanosine, in cerebellar homogenates. Similarly, in comparison with the air group, WPS inhalation elevated the cerebellar homogenate levels of cytochrome C, cleaved caspase-3 and nuclear factor-κB (NF-κB). Immunofluorescence analysis of the cerebellum showed that WPS exposure significantly augmented the number of ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein-positive microglia and astroglia, respectively. Taken together, our data show that chronic exposure to WPS is associated with cerebellar inflammation, oxidative stress, apoptosis, microgliosis and astrogliosis. These actions were associated with a mechanism involving NF-κB activation.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Mariam Abdulla Altamimi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| |
Collapse
|
16
|
Suryadinata RV, Aditya DMN, Wiana VP, Rahman D. <em>Brassica oleracea</em> var. italica extract reducing free radicals and inflammation initiated by an exposure to cigarette smoke. HEALTHCARE IN LOW-RESOURCE SETTINGS 2023. [DOI: 10.4081/hls.2023.11210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Introduction: Herbal extracts are often administered to cigarette smokers to prevent excessive free radicals. These include Brassica oleracea var. Italica, known to contain high antioxidant flavonoids and selenium micronutrients. Therefore, this study aims to determine the efficacy of Brassica oleracea var extract. italica in reducing the free radicals and inflammation present in experimental animals exposed to cigarette smoke.
Design and Methods: This research was conducted based on an experimental method using a randomized controlled trial (RCT) for 21 days. The animals used were divided into six groups (negative control, positive control, and four treatments). Particularly, the positive control and treatment groups were exposed to cigarette smoke for 2 minutes, twice a day, at 50 PPM CO levels. The treatment groups were administered the extract at different doses (0.5 ml; 0.75 ml; 1 ml; 1.25 ml), before assessing the blood level of malondialdehyde and C-Reactive Protein.
Result: The results showed the tendency for exposure to smoke to increase the number of free radicals and stimulate inflammation responses in the body (P<0,05). In addition, a strong correlation between variables was established (p=0.000; r=0.713).
Conclusions: Broccoli extracts (Brassica oleracea L. var. Italica) administration has the potential to cause a decline in the two aspects, including free radicals and inflammation responses resulting from exposure to cigarette smoke.
Collapse
|
17
|
Hashemi M, Azarnia M, Hajebrahimi Z, Nejad Ebrahimi S. The effect of hydroalcoholic extract of Cichorium intybus leaf on aryl hydrocarbon receptor expression in the testis of Wistar rats exposed to cigarette smoke. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:58-69. [PMID: 36698732 PMCID: PMC9840776 DOI: 10.22038/ajp.2022.21307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
Objective Cigarette smoke (CS) contains compounds such as reactive oxygen species (ROS). Oxidative stress caused by excessive ROS eventually leads to germ cell apoptosis and male infertility. The leaves of Cichorium intybus (chicory) are rich in natural antioxidants, but their protective effects on the adverse effects of CS on testicular tissue have not been studied. Materials and Methods 24 Wistar rats were classified into four groups: control, extract: treatment with chicory extract (200 mg/kg body weight/day) for 13 weeks, smoke: exposed to CS for 13 weeks, and smoke + extract: exposed to CS and treated with the C. intybus extract. Histological and biochemical analyses and apoptosis assay were done, and Ahr, and Cyp1a1 expression was determined. Results Treatment with C. intybus compensated for the reduction of Sertoli cells, spermatogonia, spermatocytes, and spermatids caused by CS. Chicory extract reduced free radicals and improved antioxidant status. The lowest and highest percentage of apoptotic cells was observed in the extract and smoke groups, respectively, while simultaneous treatment with C. intybus extract led to a significant reduction of apoptotic cells. The mean Ahr levels in the control, extract, smoke and smoke + extract groups were 1.00±0.57, 1.93±0.25, 5.98±0.42, and 0.62±0.22, respectively (p˂0.05). The mean levels of Cyp1a1 expression in the control, extract, smoke and smoke + extract groups were 1.00±0.31, 2.28±0.65, 5.55±0.40, and 0.21±0.23 (p˂0.05). Conclusion The C. intybus extract probably affected Cyp1a1 expression by downregulation of Ahr. These led to a decrease in free radicals and apoptosis, and an improvement in antioxidant status.
Collapse
Affiliation(s)
- Maryam Hashemi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, IranDepartment of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, IranDepartment of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| |
Collapse
|
18
|
Al-Mshari A, AlSheikh MH, Latif R, Mumtaz S, Albaker W, Al-Hariri M. Impact of smoking intensities on sleep quality in young Saudi males: a comparative study. J Med Life 2022; 15:1392-1396. [PMID: 36567837 PMCID: PMC9762367 DOI: 10.25122/jml-2022-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/11/2022] [Indexed: 12/27/2022] Open
Abstract
This study aimed to compare various components of sleep quality between cigarette smokers of various intensities and non-smokers in young Saudi males. In total, 73 healthy male participants (31 smokers and 42 non-smokers) aged 17-33 years were recruited over three months (August 2018 to October 2018). All participants completed the Pittsburgh Sleep Quality Index (PSQI) questionnaire. The smokers were then divided into three groups, according to their Smoking Index* (SI) (Cigarettes Per Day (CPD) X Years of Tobacco Use), into mild, moderate, and heavy smokers. The PSQI was significantly higher in heavy smokers than in mild smokers (P=0.022) or non-smokers (p=0.013). A significant positive correlation was observed between the PSQI and the smoking index (p=0.005). Sleep duration was significantly longer in heavy smokers compared to mild (p=0.032) and nonsmokers (p=0.047). Sleep disturbance was significantly higher in moderate than nonsmokers (p=0.035) and moderate than mild smokers (p=0.028). Sleep latency was significantly longer in heavy than nonsmokers (p=0.011). Daytime dysfunction was significantly higher in moderate than mild smokers (p=0.041). Habitual sleep efficiency was significantly greater in moderate than in either mild (p=0.013) or nonsmokers (p=0.021). The use of sleep medication was significantly higher in moderate than nonsmokers (p=0.041). The findings suggest that poorer sleep quality is positively associated with smoking intensity among young Saudi males. Considering the importance of sleep quality for well-being and health, these results suggest exploring how improving sleep quality could inform future smoking cessation interventions.
Collapse
Affiliation(s)
- Arwa Al-Mshari
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Mona Hmoud AlSheikh
- Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rabia Latif
- Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sadaf Mumtaz
- Physiology Department, Dental College, HITEC-Institute of Medical Sciences, Taxila, Pakistan
| | - Waleed Albaker
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal, Dammam, Saudi Arabi
| | - Mohammed Al-Hariri
- Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,Corresponding Author: Mohammed Al-Hariri, Physiology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. E-mail:
| |
Collapse
|
19
|
Dahdah A, Jaggers RM, Sreejit G, Johnson J, Kanuri B, Murphy AJ, Nagareddy PR. Immunological Insights into Cigarette Smoking-Induced Cardiovascular Disease Risk. Cells 2022; 11:3190. [PMID: 36291057 PMCID: PMC9600209 DOI: 10.3390/cells11203190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023] Open
Abstract
Smoking is one of the most prominent addictions of the modern world, and one of the leading preventable causes of death worldwide. Although the number of tobacco smokers is believed to be at a historic low, electronic cigarette use has been on a dramatic rise over the past decades. Used as a replacement for cigarette smoking, electronic cigarettes were thought to reduce the negative effects of burning tobacco. Nonetheless, the delivery of nicotine by electronic cigarettes, the most prominent component of cigarette smoke (CS) is still delivering the same negative outcomes, albeit to a lesser extent than CS. Smoking has been shown to affect both the structural and functional aspects of major organs, including the lungs and vasculature. Although the deleterious effects of smoking on these organs individually is well-known, it is likely that the adverse effects of smoking on these organs will have long-lasting effects on the cardiovascular system. In addition, smoking has been shown to play an independent role in the homeostasis of the immune system, leading to major sequela. Both the adaptive and the innate immune system have been explored regarding CS and have been demonstrated to be altered in a way that promotes inflammatory signals, leading to an increase in autoimmune diseases, inflammatory diseases, and cancer. Although the mechanism of action of CS has not been fully understood, disease pathways have been explored in both branches of the immune system. The pathophysiologically altered immune system during smoking and its correlation with cardiovascular diseases is not fully understood. Here we highlight some of the important pathological mechanisms that involve cigarette smoking and its many components on cardiovascular disease and the immune systems in order to have a better understanding of the mechanisms at play.
Collapse
Affiliation(s)
- Albert Dahdah
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Robert M. Jaggers
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jillian Johnson
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Babunageswararao Kanuri
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3010, Australia
| | - Prabhakara R. Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Jamal QMS, Alharbi AH. Molecular docking and dynamics studies of cigarette smoke carcinogens interacting with acetylcholinesterase and butyrylcholinesterase enzymes of the central nervous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61972-61992. [PMID: 34382170 DOI: 10.1007/s11356-021-15269-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The free radicals produced by cigarette smoking are responsible for tissue damage, heart and lung diseases, and carcinogenesis. The effect of tobacco on the central nervous system (CNS) has received increased attention nowadays in research. Therefore, to explore the molecular interaction of cigarette smoke carcinogens (CSC) 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanol (NNAL), 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK), and N'-nitrosonornicotine (NNN) with well-known targets of CNS-related disorders, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes, a cascade of the computational study was conducted including molecular docking and molecular dynamics simulations (MDS). The investigated results of NNAL+AChEcomplex, NNK+AChEcomplex, and NNK+BuChEcomplex based on intermolecular energies (∆G) were found to -8.57 kcal/mol, -8.21 kcal/mol, and -8.08 kcal/mol, respectively. MDS deviation and fluctuation plots of the NNAL and NNK interaction with AChE and BuChE have shown significant results. Further, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results shown the best total binding energy (Binding∆G) -87.381 (+/-13.119) kJ/mol during NNK interaction with AChE. Our study suggests that CSC is well capable of altering the normal biomolecular mechanism of CNS; thus, obtained data could be useful to design extensive wet laboratory experimentation to know the effects of CSC on human CNS.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia.
| | - Ali H Alharbi
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| |
Collapse
|
21
|
Ohlrogge AH, Frost L, Schnabel RB. Harmful Impact of Tobacco Smoking and Alcohol Consumption on the Atrial Myocardium. Cells 2022; 11:2576. [PMID: 36010652 PMCID: PMC9406618 DOI: 10.3390/cells11162576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Tobacco smoking and alcohol consumption are widespread exposures that are legal and socially accepted in many societies. Both have been widely recognized as important risk factors for diseases in all vital organ systems including cardiovascular diseases, and with clinical manifestations that are associated with atrial dysfunction, so-called atrial cardiomyopathy, especially atrial fibrillation and stroke. The pathogenesis of atrial cardiomyopathy, atrial fibrillation, and stroke in context with smoking and alcohol consumption is complex and multifactorial, involving pathophysiological mechanisms, environmental, and societal aspects. This narrative review summarizes the current literature regarding alterations in the atrial myocardium that is associated with smoking and alcohol.
Collapse
Affiliation(s)
- Amelie H. Ohlrogge
- Department of Cardiology, University Heart and Vascular Centre Hamburg, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Lars Frost
- Diagnostic Centre, University Clinic for Development of Innovative Patient Pathways, Silkeborg Regional Hospital, 8600 Silkeborg, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Renate B. Schnabel
- Department of Cardiology, University Heart and Vascular Centre Hamburg, 20246 Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
22
|
Pozuelos GL, Kagda M, Rubin MA, Goniewicz ML, Girke T, Talbot P. Transcriptomic Evidence That Switching from Tobacco to Electronic Cigarettes Does Not Reverse Damage to the Respiratory Epithelium. TOXICS 2022; 10:370. [PMID: 35878275 PMCID: PMC9321508 DOI: 10.3390/toxics10070370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022]
Abstract
The health benefits of switching from tobacco to electronic cigarettes (ECs) are neither confirmed nor well characterized. To address this problem, we used RNA-seq analysis to compare the nasal epithelium transcriptome from the following groups (n = 3 for each group): (1) former smokers who completely switched to second generation ECs for at least 6 months, (2) current tobacco cigarette smokers (CS), and (3) non-smokers (NS). Group three included one former cigarette smoker. The nasal epithelial biopsies from the EC users vs. NS had a higher number of differentially expressed genes (DEGs) than biopsies from the CS vs. NS and CS vs. EC sets (1817 DEGs total for the EC vs. NS, 407 DEGs for the CS vs. NS, and 116 DEGs for the CS vs. EC comparison). In the EC vs. NS comparison, enriched gene ontology terms for the downregulated DEGs included cilium assembly and organization, whereas gene ontologies for upregulated DEGs included immune response, keratinization, and NADPH oxidase. Similarly, ontologies for cilium movement were enriched in the downregulated DEGs for the CS vs. NS group. Reactome pathway analysis gave similar results and also identified keratinization and cornified envelope in the upregulated DEGs in the EC vs. NS comparison. In the CS vs. NS comparison, the enriched Reactome pathways for upregulated DEGs included biological oxidations and several metabolic processes. Regulator effects identified for the EC vs. NS comparison were inflammatory response, cell movement of phagocytes and degranulation of phagocytes. Disease Ontology Sematic Enrichment analysis identified lung disease, mouth disease, periodontal disease and pulmonary fibrosis in the EC vs. NS comparison. Squamous metaplasia associated markers, keratin 10, keratin 13 and involucrin, were increased in the EC vs. NS comparison. Our transcriptomic analysis showed that gene expression profiles associated with EC use are not equivalent to those from non-smokers. EC use may interfere with airway epithelium recovery by promoting increased oxidative stress, inhibition of ciliogenesis, and maintaining an inflammatory response. These transcriptomic alterations may contribute to the progression of diseases with chronic EC use.
Collapse
Affiliation(s)
- Giovanna L. Pozuelos
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; (G.L.P.); (M.K.); (M.A.R.)
| | - Meenakshi Kagda
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; (G.L.P.); (M.K.); (M.A.R.)
| | - Matine A. Rubin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; (G.L.P.); (M.K.); (M.A.R.)
| | - Maciej L. Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA;
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; (G.L.P.); (M.K.); (M.A.R.)
| |
Collapse
|
23
|
Zhang Y, Archie SR, Ghanwatkar Y, Sharma S, Nozohouri S, Burks E, Mdzinarishvili A, Liu Z, Abbruscato TJ. Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids Barriers CNS 2022; 19:46. [PMID: 35672716 PMCID: PMC9171490 DOI: 10.1186/s12987-022-00339-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Knowledge of the entry receptors responsible for SARS-CoV-2 is key to understand the neural transmission and pathogenesis of COVID-19 characterized by a neuroinflammatory scenario. Understanding the brain distribution of angiotensin converting enzyme 2 (ACE2), the primary entry receptor for SARS-CoV-2, remains mixed. Smoking has been shown as a risk factor for COVID-19 severity and it is not clear how smoking exacerbates the neural pathogenesis in smokers. METHODS Immunohistochemistry, real-time PCR and western blot assays were used to systemically examine the spatial-, cell type- and isoform-specific expression of ACE2 in mouse brain and primary cultured brain cells. Experimental smoking exposure was conducted to evaluate the effect of smoking on brain expression. RESULTS We observed ubiquitous expression of ACE2 but uneven brain distribution, with high expression in the cerebral microvasculature, medulla oblongata, hypothalamus, subventricular zones, and meninges around medulla oblongata and hypothalamus. Co-staining with cell type-specific markers demonstrates ACE2 is primarily expressed in astrocytes around the microvasculature, medulla oblongata, hypothalamus, ventricular and subventricular zones of cerebral ventricles, and subependymal zones in rhinoceles and rostral migratory streams, radial glial cells in the lateral ventricular zones, tanycytes in the third ventricle, epithelial cells and stroma in the cerebral choroid plexus, as well as cerebral pericytes, but rarely detected in neurons and cerebral endothelial cells. ACE2 expression in astrocytes is further confirmed in primary cultured cells. Furthermore, isoform-specific analysis shows astrocyte ACE2 has the peptidase domain responsible for SARS-CoV-2 entry, indicating astrocytes are indeed vulnerable to SARS-CoV-2 infection. Finally, our data show experimental tobacco smoking and electronic nicotine vaping exposure increase proinflammatory and/or immunomodulatory cytokine IL-1a, IL-6 and IL-5 without significantly affecting ACE2 expression in the brain, suggesting smoking may pre-condition a neuroinflammatory state in the brain. CONCLUSIONS The present study demonstrates a spatial- and cell type-specific expression of ACE2 in the brain, which might help to understand the acute and lasting post-infection neuropsychological manifestations in COVID-19 patients. Our data highlights a potential role of astrocyte ACE2 in the neural transmission and pathogenesis of COVID-19. This also suggests a pre-conditioned neuroinflammatory and immunocompromised scenario might attribute to exacerbated COVID-19 severity in the smokers.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Elizabeth Burks
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Alexander Mdzinarishvili
- Imaging Core at Office of Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Zijuan Liu
- Imaging Core at Office of Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA.
| |
Collapse
|
24
|
Dobric A, De Luca SN, Seow HJ, Wang H, Brassington K, Chan SMH, Mou K, Erlich J, Liong S, Selemidis S, Spencer SJ, Bozinovski S, Vlahos R. Cigarette Smoke Exposure Induces Neurocognitive Impairments and Neuropathological Changes in the Hippocampus. Front Mol Neurosci 2022; 15:893083. [PMID: 35656006 PMCID: PMC9152421 DOI: 10.3389/fnmol.2022.893083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Objective Neurocognitive dysfunction is present in up to ∼61% of people with chronic obstructive pulmonary disease (COPD), with symptoms including learning and memory deficiencies, negatively impacting the quality of life of these individuals. As the mechanisms responsible for neurocognitive deficits in COPD remain unknown, we explored whether chronic cigarette smoke (CS) exposure causes neurocognitive dysfunction in mice and whether this is associated with neuroinflammation and an altered neuropathology. Methods Male BALB/c mice were exposed to room air (sham) or CS (9 cigarettes/day, 5 days/week) for 24 weeks. After 23 weeks, mice underwent neurocognitive tests to assess working and spatial memory retention. At 24 weeks, mice were culled and lungs were collected and assessed for hallmark features of COPD. Serum was assessed for systemic inflammation and the hippocampus was collected for neuroinflammatory and structural analysis. Results Chronic CS exposure impaired lung function as well as driving pulmonary inflammation, emphysema, and systemic inflammation. CS exposure impaired working memory retention, which was associated with a suppression in hippocampal microglial number, however, these microglia displayed a more activated morphology. CS-exposed mice showed changes in astrocyte density as well as a reduction in synaptophysin and dendritic spines in the hippocampus. Conclusion We have developed an experimental model of COPD in mice that recapitulates the hallmark features of the human disease. The altered microglial/astrocytic profiles and alterations in the neuropathology within the hippocampus may explain the neurocognitive dysfunction observed during COPD.
Collapse
|
25
|
De Luca SN, Brassington K, Chan SMH, Dobric A, Mou K, Seow HJ, Vlahos R. Ebselen prevents cigarette smoke-induced cognitive dysfunction in mice by preserving hippocampal synaptophysin expression. J Neuroinflammation 2022; 19:72. [PMID: 35351173 PMCID: PMC8966248 DOI: 10.1186/s12974-022-02432-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/13/2022] [Indexed: 11/26/2022] Open
Abstract
Background Cigarette smoking (CS) is the leading cause of chronic obstructive pulmonary disease (COPD). The “spill-over” of pulmonary inflammation into the systemic circulation may damage the brain, leading to cognitive dysfunction. Cessation of CS can improve pulmonary and neurocognitive outcomes, however, its benefit on the neuroinflammatory profile remains uncertain. Here, we investigate how CS exposure impairs neurocognition and whether this can be reversed with CS cessation or an antioxidant treatment. Methods Male BALB/c mice were exposed to CS (9 cigarettes/day for 8 weeks) followed by 4 weeks of CS cessation. Another cohort of CS-exposed mice were co-administrated with a glutathione peroxidase mimetic, ebselen (10 mg/kg) or vehicle (5% CM-cellulose). We assessed pulmonary inflammation, spatial and working memory, and the hippocampal microglial, oxidative and synaptic profiles. Results CS exposure increased lung inflammation which was reduced following CS cessation. CS caused spatial and working memory impairments which were attributed to hippocampal microglial activation and suppression of synaptophysin. CS cessation did not improve memory deficits or alter microglial activation. Ebselen completely prevented the CS-induced working and spatial memory impairments, which was associated with restored synaptophysin expression without altering microglial activation. Conclusion We were able to model the CS-induced memory impairment and microglial activation seen in human COPD. The preventative effects of ebselen on memory impairment is likely to be dependent on a preserved synaptogenic profile. Cessation alone also appears to be insufficient in correcting the memory impairment, suggesting the importance of incorporating antioxidant therapy to help maximising the benefit of cessation.
Collapse
|
26
|
Medicinal Foods, YT and RH Combination, Suppress Cigarette Smoke-Induced Inflammation and Oxidative Stress by Inhibiting NF- κB/ERK Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4525758. [PMID: 35321502 PMCID: PMC8938073 DOI: 10.1155/2022/4525758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Background Cigarette smoke is a risk factor for Chronic Obstructive Pulmonary Disease (COPD). Given the lack of COPD curative treatment, dietary management for COPD patients has become important. This study investigated whether the medicinal foods (YT and RH) could suppress cigarette smoke exposure-induced inflammation and oxidative stress. Methods Chronic pulmonary inflammation in male C57 mice was induced by a 4-week exposure to cigarette smoke (CS). The medicinal foods YT and RH were orally administered 1 week prior to CS exposure. The protective effects were assessed by measuring the pulmonary function and histopathological evaluations. Inflammatory cell numbers and cytokines levels in BALF and blood serum were analyzed by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) and superoxide dismutase (SOD) levels of the lung were analyzed. Furthermore, the levels of phosphorylated ERK and NF-κB in both the mice lungs and RAW264.7 cells were also detected. Results YT and RH combination (YT + RH) significantly improved pulmonary function and suppressed the inflammation, including cell number and cytokines in BALF relative to the CS group; histological examination revealed protective effects of YT + RH in the lungs of mice exposed to CS. Moreover, the MDA level in the lung of the YT + RH group of mice was lower, the SOD activity was higher, and in vitro treatment of YT and RH combination attenuated reactive oxygen species (ROS) expression in mouse macrophage RAW264.7 cells stimulated with cigarette smoke (CSE). YT + RH combination significantly reduced the expression of pNF-κB and pERK in the lung tissues and macrophage stimulated with CSE. Conclusions YT and RH combination attenuates cigarette smoke-induced inflammation and oxidative stress through inhibition of the NF-κB/ERK signaling pathway.
Collapse
|
27
|
Huang T, Huang X, Li H, Qi J, Wang N, Xu Y, Zeng Y, Xiao X, Liu R, Chan YL, Oliver BG, Yi C, Li D, Chen H. Maternal Cigarette Smoke Exposure Exaggerates the Behavioral Defects and Neuronal Loss Caused by Hypoxic-Ischemic Brain Injury in Female Offspring. Front Cell Neurosci 2022; 16:818536. [PMID: 35250486 PMCID: PMC8894648 DOI: 10.3389/fncel.2022.818536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveHypoxic-ischemic encephalopathy affects ∼6 in 1,000 preterm neonates, leading to significant neurological sequela (e.g., cognitive deficits and cerebral palsy). Maternal smoke exposure (SE) is one of the common causes of neurological disorders; however, female offspring seems to be less affected than males in our previous study. We also showed that maternal SE exaggerated neurological disorders caused by neonatal hypoxic-ischemic brain injury in adolescent male offspring. Here, we aimed to examine whether female littermates of these males are protected from such insult.MethodsBALB/c dams were exposed to cigarette smoke generated from 2 cigarettes twice daily for 6 weeks before mating, during gestation and lactation. To induce hypoxic-ischemic brain injury, half of the pups from each litter underwent left carotid artery occlusion, followed by exposure to 8% oxygen (92% nitrogen) at postnatal day (P) 10. Behavioral tests were performed at P40–44, and brain tissues were collected at P45.ResultsMaternal SE worsened the defects in short-term memory and motor function in females with hypoxic-ischemic injury; however, reduced anxiety due to injury was observed in the control offspring, but not the SE offspring. Both hypoxic-ischemic injury and maternal SE caused significant loss of neuronal cells and synaptic proteins, along with increased oxidative stress and inflammatory responses.ConclusionOxidative stress and inflammatory response due to maternal SE may be the mechanism of worsened neurological outcomes by hypoxic-ischemic brain injury in females, which was similar to their male littermates shown in our previous study.
Collapse
Affiliation(s)
- Taida Huang
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Huang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Li
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhua Qi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nan Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yi Xu
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yunxin Zeng
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xuewen Xiao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ruide Liu
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Chenju Yi,
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Dan Li,
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Sustained Functioning Impairments and Oxidative Stress with Neurobehavioral Dysfunction Associated with Oral Nicotine Exposure in the Brain of a Murine Model of Ehrlich Ascites Carcinoma: Modifying the Antioxidant Role of Chlorella vulgaris. BIOLOGY 2022; 11:biology11020279. [PMID: 35205143 PMCID: PMC8869302 DOI: 10.3390/biology11020279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022]
Abstract
Simple Summary Nicotine is the major psychoactive component considered to underlie tobacco’s addictive nature, and its dependence has been linked to several drawbacks on behavior and brain health. The purpose of this study was to investigate the mechanisms triggered by oral nicotine that cause brain tissue damage, as well as the supportive role of Chlorella vulgaris microalgae supplementation in Ehrlich ascites carcinoma in mice. The results revealed pronounced neurobehavioral alterations, increased mortality rate, oxidative stress, DNA damage, and augmented inflammatory response in the brain tissue alongside the microstructural alteration caused by nicotine. Chlorella vulgaris was quite successful in reducing the negative effects of nicotine. It acts as an antioxidant anti-inflammatory and restores nearly normal tissue architectures. As a result, we believe it should be supplemented to cancer patients consuming regular nicotine doses. Abstract Background: This study provides a model for studying the mechanism(s) responsible for the nervous tissue damage and misfunctioning that occurred due to oral nicotine exposure, considered a stress factor, during the presence of Ehrlich ascites carcinoma bearing in the mouse model (EAC). The mitigating role of Chlorella vulgaris (CV) against nicotine-induced brain damage was evaluated. Methods: Eighty Swiss female mice were classified into four groups, these were the control, the CV group, the nicotine group(100 µg/kg), and the combination group. Oxidant/antioxidant status, proinflammatory cytokines levels, DNA damage, quantitative microscopical lesions, and Caspase 3, Bcl-2 proteins were assessed in the current study. Levels of dopamine (DA) and gamma-aminobutyric acid (GABA) were also evaluated. Results: Nicotine was found to cause pronounced neurobehavioral alterations, increase the mortalities oxidative stress DNA damage, and augment the inflammatory response in brain tissue alongside the microstructural alteration. The administration of CV with nicotine in EAC-bearing mice rescued the detrimental effects of nicotine. Conclusions: CV aids in reducing the harmful effects of nicotine and returns the conditions caused by nicotine to near-control levels. Thus, we are in favor of giving it to cancer patients who are taking daily dosages of nicotine even by smoking cigarettes or being exposed to second-hand smoke.
Collapse
|
29
|
Durão ACCDS, Brandão WN, Bruno V, W. Spelta LE, Duro SDO, Barreto dos Santos N, Paranhos BAPB, Zanluqui NG, Yonamine M, Pierre Schatzmann Peron J, Munhoz CD, Marcourakis T. In Utero Exposure to Environmental Tobacco Smoke Increases Neuroinflammation in Offspring. FRONTIERS IN TOXICOLOGY 2022; 3:802542. [PMID: 35295109 PMCID: PMC8915864 DOI: 10.3389/ftox.2021.802542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
The embryonic stage is the most vulnerable period for congenital abnormalities. Due to its prolonged developmental course, the central nervous system (CNS) is susceptible to numerous genetic, epigenetic, and environmental influences. During embryo implantation, the CNS is more vulnerable to external influences such as environmental tobacco smoke (ETS), increasing the risk for delayed fetal growth, sudden infant death syndrome, and immune system abnormalities. This study aimed to evaluate the effects of in utero exposure to ETS on neuroinflammation in the offspring of pregnant mice challenged or not with lipopolysaccharide (LPS). After the confirmation of mating by the presence of the vaginal plug until offspring birth, pregnant C57BL/6 mice were exposed to either 3R4F cigarettes smoke (Kentucky University) or compressed air, twice a day (1h each), for 21 days. Enhanced glial cell and mixed cell cultures were prepared from 3-day-old mouse pups. After cell maturation, both cells were stimulated with LPS or saline. To inhibit microglia activation, minocycline was added to the mixed cell culture media 24 h before LPS challenge. To verify the influence of in utero exposure to ETS on the development of neuroinflammatory events in adulthood, a different set of 8-week-old animals was submitted to the Autoimmune Experimental Encephalomyelitis (EAE) model. The results indicate that cells from LPS-challenged pups exposed to ETS in utero presented high levels of proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNFα) and decreased cell viability. Such a proinflammatory environment could modulate fetal programming by an increase in microglia and astrocytes miRNA155. This scenario may lead to the more severe EAE observed in pups exposed to ETS in utero.
Collapse
Affiliation(s)
| | - Wesley Nogueira Brandão
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor Bruno
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lídia Emmanuela W. Spelta
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie de Oliveira Duro
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto dos Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Nágela Ghabdan Zanluqui
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carolina Demarchi Munhoz, ; Tania Marcourakis,
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carolina Demarchi Munhoz, ; Tania Marcourakis,
| |
Collapse
|
30
|
Khaled S, Makled MN, Nader MA. Protective effects of propolis extract against nicotine-evoked pulmonary and hepatic damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5812-5826. [PMID: 34431048 DOI: 10.1007/s11356-021-16093-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
There is increasing interest in the use of natural products to treat many diseases, considering the minimal toxicity, availability, and low cost. Propolis, a natural resinous product produced by honeybees, has been proven for its antioxidant and anti-inflammatory properties. Therefore, this study was designed to investigate the protective potential of propolis extract against nicotine-induced pulmonary and hepatic damage in rats. Sprague Dawley rats were divided into six groups: control, propolis (200 and 300 mg/kg, p.o.), nicotine (10 mg/kg, i.p), and nicotine plus propolis-treated groups. Nicotine and propolis were given every day for 8 weeks. Then, blood and bronchoalveolar lavage fluid (BALF) were collected for assessing liver and lung functions. Liver and lung tissues were also harvested to assess oxidative stress and inflammatory biomarkers in addition to histopathological and immunohistochemical analysis. Both doses of propolis significantly decreased AST, ALT, ALP, and total and differential cell counts in a dose-dependent manner. Propolis extract significantly attenuated oxidative stress in both lung and liver tissues. The restoration of antioxidant status (GSH level, SOD activities) and reduction of nitric oxide and MDA content was more so in propolis 300-treated than propolis 200-treated group. This was parallel to the improvement seen in histopathological examination. Propolis 200 and 300 significantly decreased Nrf2 expression and increased HO-1 expression in a dose-dependent manner. Moreover, immunohistochemical examination revealed that propolis 200 and 300 decreased the expression of iNOS in lung and liver tissues while decreased TNF-α expression in lung tissues only. Propolis extract could have a protective potential against nicotine-induced pulmonary and hepatic damage via activating Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Shimaa Khaled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
31
|
Zhu X, Zhan Y, Gu Y, Huang Q, Wang T, Deng Z, Xie J. Cigarette Smoke Promotes Interleukin-8 Production in Alveolar Macrophages Through the Reactive Oxygen Species/Stromal Interaction Molecule 1/Ca 2+ Axis. Front Physiol 2021; 12:733650. [PMID: 34690806 PMCID: PMC8531208 DOI: 10.3389/fphys.2021.733650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), primarily attributed to cigarette smoke (CS), is characterized by multiple pathophysiological changes, including oxidative stress and inflammation. Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor that regulates Ca2+ entry in different types of cells. The present study aimed to explore the relationship between CS-induced oxidative stress and inflammation, as well as the functional role of STIM1 thereinto. Our results showed that the reactive oxygen species (ROS)/STIM1/Ca2+ axis played a critical role in CS-induced secretion of interleukin (IL)-8 in human alveolar macrophages. Specifically, smokers with COPD (SC) showed higher levels of ROS in the lung tissues compared with healthy non-smokers (HN). STIM1 was upregulated in the lung tissues of COPD patients. The expression of STIM1 was positively associated with ROS levels and negatively correlated with pulmonary function. The expression of STIM1 was also increased in the bronchoalveolar lavage fluid (BALF) macrophages of COPD patients and PMA-differentiated THP-1 macrophages stimulated by cigarette smoke extract (CSE). Additionally, CSE-induced upregulation of STIM1 in PMA-differentiated THP-1 macrophages was inhibited by pretreatment with N-acetylcysteine (NAC), a ROS scavenger. Transfection with small interfering RNA (siRNA) targeting STIM1 and pretreatment with NAC alleviated CSE-induced increase in intracellular Ca2+ levels and IL-8 expression. Furthermore, pretreatment with SKF-96365 and 2-APB, the inhibitors of Ca2+ influx, suppressed CSE-induced secretion of IL-8. In conclusion, our study demonstrates that CSE-induced ROS production may increase the expression of STIM1 in macrophages, which further promotes the release of IL-8 by regulating Ca2+ entry. These data suggest that STIM1 may play a crucial role in CSE-induced ROS production and inflammation, and participate in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Xianying Zhu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Dobric A, De Luca SN, Spencer SJ, Bozinovski S, Saling MM, McDonald CF, Vlahos R. Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. Pharmacol Ther 2021; 233:108017. [PMID: 34626675 DOI: 10.1016/j.pharmthera.2021.108017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.
Collapse
Affiliation(s)
- Aleksandar Dobric
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Simone N De Luca
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Michael M Saling
- Clinical Neuropsychology, The University of Melbourne and Austin Health, VIC, Australia
| | - Christine F McDonald
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia; Department of Respiratory & Sleep Medicine, The University of Melbourne and Austin Health, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Ameliorating Effect of Combined Cinnamon and Ginger Oils against the Neurotoxicity of Nicotine Administration on the Prefrontal Cortex of Adult Albino Rats: Immunohistochemical and Ultrastructural Study. Sci Pharm 2021. [DOI: 10.3390/scipharm89030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Nicotine is the active alkaloid in cigarettes. It was reported that tobacco smoking has many hazards; one of these hazards is the effect on the cognitive function of the prefrontal cortex. The aim of our study is to investigate the antioxidant effects of ginger, cinnamon oils, and their combination on morphological changes in the prefrontal cortex that were induced by nicotine. Materials and methods: Fifty adult male albino rats were divided into five groups: group I (control group), group II (nicotine), group III (nicotine + cinnamon), group IV (nicotine + ginger), and group V (nicotine + cinnamon + ginger). The coronal sections from the anterior part of the rat brain at the site of prefrontal cortex were examined by light microscope for (H&E and immunohistochemical staining with TNF-α and GFAP), while the ultrastructure morphology was examined by transmission electron microscopy. Levels of the oxidative stress markers (MDA, GSH) in the rats’ brain tissue homogenate were biochemically assessed. Results: Compared to the control group, the rats that were treated with nicotine (group II) showed a significant oxidative stress in the form of marked elevation of MDA and decrease in GSH, apoptotic changes especially in the pyramidal cells in the form of neuronal cell degeneration and pyknosis, and an elevation in the inflammatory marker TNF-α and GFAP expressions. These changes were observed to a lesser degree in rat group (III) and group (IV), while there was a marked improvement achieved by the combined usage of cinnamon and ginger oils, together compared to the nicotine group. Conclusions: Ginger and cinnamon are powerful antioxidants which ameliorate the degenerative and oxidative effects produced by nicotine on a rat’s prefrontal cortex.
Collapse
|
34
|
Smoking and Neuropsychiatric Disease-Associations and Underlying Mechanisms. Int J Mol Sci 2021; 22:ijms22147272. [PMID: 34298890 PMCID: PMC8304236 DOI: 10.3390/ijms22147272] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Despite extensive efforts to combat cigarette smoking/tobacco use, it still remains a leading cause of global morbidity and mortality, killing more than eight million people each year. While tobacco smoking is a major risk factor for non-communicable diseases related to the four main groups—cardiovascular disease, cancer, chronic lung disease, and diabetes—its impact on neuropsychiatric risk is rather elusive. The aim of this review article is to emphasize the importance of smoking as a potential risk factor for neuropsychiatric disease and to identify central pathophysiological mechanisms that may contribute to this relationship. There is strong evidence from epidemiological and experimental studies indicating that smoking may increase the risk of various neuropsychiatric diseases, such as dementia/cognitive decline, schizophrenia/psychosis, depression, anxiety disorder, and suicidal behavior induced by structural and functional alterations of the central nervous system, mainly centered on inflammatory and oxidative stress pathways. From a public health perspective, preventive measures and policies designed to counteract the global epidemic of smoking should necessarily include warnings and actions that address the risk of neuropsychiatric disease.
Collapse
|
35
|
Santiago Santana JM, Vega-Torres JD, Ontiveros-Angel P, Bin Lee J, Arroyo Torres Y, Cruz Gonzalez AY, Aponte Boria E, Zabala Ortiz D, Alvarez Carmona C, Figueroa JD. Oxidative stress and neuroinflammation in a rat model of co-morbid obesity and psychogenic stress. Behav Brain Res 2021; 400:112995. [PMID: 33301815 PMCID: PMC8713435 DOI: 10.1016/j.bbr.2020.112995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is growing recognition for a reciprocal, bidirectional link between anxiety disorders and obesity. Although the mechanisms linking obesity and anxiety remain speculative, this bidirectionality suggests shared pathophysiological processes. Neuroinflammation and oxidative damage are implicated in both pathological anxiety and obesity. This study investigates the relative contribution of comorbid diet-induced obesity and stress-induced anxiety to neuroinflammation and oxidative stress. METHODS Thirty-six (36) male Lewis rats were divided into four groups based on diet type and stress exposure: 1) control diet unexposed (CDU) and 2) exposed (CDE), 3) Western-like high-saturated fat diet unexposed (WDU) and 4) exposed (WDE). Neurobehavioral tests were performed to assess anxiety-like behaviors. The catalytic concentrations of glutathione peroxidase and reductase were measured from plasma samples, and neuroinflammatory/oxidative stress biomarkers were measured from brain samples using Western blot. Correlations between behavioral phenotypes and biomarkers were assessed with Pearson's correlation procedures. RESULTS We found that WDE rats exhibited markedly increased levels of glial fibrillary acidic protein (185 %), catalase protein (215 %), and glutathione reductase (GSHR) enzymatic activity (418 %) relative to CDU rats. Interestingly, the brain protein levels of glutathione peroxidase (GPx) and catalase were positively associated with body weight and behavioral indices of anxiety. CONCLUSIONS Together, our results support a role for neuroinflammation and oxidative stress in heightened emotional reactivity to obesogenic environments and psychogenic stress. Uncovering adaptive responses to obesogenic environments characterized by high access to high-saturated fat/high-sugar diets and toxic stress has the potential to strongly impact how we treat psychiatric disorders in at-risk populations.
Collapse
Affiliation(s)
- Jose M Santiago Santana
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Julio D Vega-Torres
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Perla Ontiveros-Angel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jeong Bin Lee
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Yaria Arroyo Torres
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico; Universidad Metropolitana de Cupey Sciences and Technology School, Puerto Rico
| | - Alondra Y Cruz Gonzalez
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Esther Aponte Boria
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Deisha Zabala Ortiz
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Carolina Alvarez Carmona
- Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, University of Puerto Rico Carolina Campus, Puerto Rico
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| |
Collapse
|
36
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
37
|
Meng N, Dong Y, Huo T, Song M, Jiang X, Xiao Y, Lv P. Past Exposure to Cigarette Smoke Aggravates Cognitive Impairment in a Rat Model of Vascular Dementia via Neuroinflammation. Cell Mol Neurobiol 2020; 42:1021-1034. [PMID: 33156450 DOI: 10.1007/s10571-020-00992-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Smoking is a risk factor for dementia. Cognitive function can be partially restored after quitting smoking, but still lower than never smoked group. The underlying mechanisms still remain unclear. The effects of smoking cessation combined with cerebral chronic hypoperfusion (CCH) on cognitive function have never been described. Here, we established a cigarette smoking cessation model, a CCH model, and a cigarette smoking cessation plus CCH model. We investigated cognitive function in these models and the mechanisms of the neuroinflammation, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3)/cysteine aspartate-specific proteinase (caspase-1)/interleukin- 1β (IL-1β) pathway, and eucaryotic initiation factor 2α (eIF2α) /autophagy pathway. We used morris water maze (MWM) and novel object recognition (NOR) test to evaluate cognitive function in rats. Nissl staining was performed to observe cell morphology in the hippocampal CA1 area. A neuroinflammatory marker (glial fibrillary acidic protein, GFAP) was assessed by Western blot analysis and immunohistochemistry staining. IL-1β levels were detected by ELISA. The protein levels of NLRP3/caspase-1/ IL-1β and eIF2α/autophagy pathway were evaluated by Western blot analysis. LC3 was assessed by immunofluorescence staining. CCH can affect cognitive function by influencing neuroinflammation, NLRP3/caspase-1/IL-1β pathway, and eIF2α/autophagy pathway. Past exposure to cigarette smoke can also affect cognitive function by influencing neuroinflammation and NLRP3/caspase-1/IL-1β pathway, which may be induced by smoking and may not be alleviated after smoking cessation. Past exposure to cigarette smoke does not influence autophagy, which may be increased by smoking and then decrease to normal levels after smoking cessation. Past exposure to smoking can further aggravate cognitive impairment and neuroinflammation in VaD animals: cognitive impairment induced by CCH via neuroinflammation, NLRP3/caspase-1/IL-1β, and eIF2α/autophagy pathway and cognitive impairment induced by past exposure to cigarette smoke via neuroinflammation and NLRP3/caspase-1/IL-1β pathway. The combined group had the worst cognitive impairment because of harmful reasons.
Collapse
Affiliation(s)
- Nan Meng
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China.,Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Tiantian Huo
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Meiyi Song
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Xin Jiang
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yining Xiao
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China. .,Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China.
| |
Collapse
|
38
|
Rovio SP, Pihlman J, Pahkala K, Juonala M, Magnussen CG, Pitkänen N, Ahola-Olli A, Salo P, Kähönen M, Hutri-Kähönen N, Lehtimäki T, Jokinen E, Laitinen T, Taittonen L, Tossavainen P, Viikari JSA, Raitakari OT. Childhood Exposure to Parental Smoking and Midlife Cognitive Function. Am J Epidemiol 2020; 189:1280-1291. [PMID: 32242223 DOI: 10.1093/aje/kwaa052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/23/2020] [Indexed: 11/14/2022] Open
Abstract
We studied whether exposure to parental smoking in childhood/adolescence is associated with midlife cognitive function, leveraging data from the Cardiovascular Risk in Young Finns Study. A population-based cohort of 3,596 children/adolescents aged 3-18 years was followed between 1980 and 2011. In 2011, cognitive testing was performed on 2,026 participants aged 34-49 years using computerized testing. Measures of secondhand smoke exposure in childhood/adolescence consisted of parental self-reports of smoking and participants' serum cotinine levels. Participants were classified into 3 exposure groups: 1) no exposure (nonsmoking parents, cotinine <1.0 ng/mL); 2) hygienic parental smoking (1-2 smoking parents, cotinine <1.0 ng/mL); and 3) nonhygienic parental smoking (1-2 smoking parents, cotinine ≥1.0 ng/mL). Analyses adjusted for sex, age, family socioeconomic status, polygenic risk score for cognitive function, adolescent/adult smoking, blood pressure, and serum total cholesterol level. Compared with the nonexposed, participants exposed to nonhygienic parental smoking were at higher risk of poor (lowest quartile) midlife episodic memory and associative learning (relative risk (RR) = 1.38, 95% confidence interval (CI): 1.08, 1.75), and a weak association was found for short-term and spatial working memory (RR = 1.25, 95% CI: 0.98, 1.58). Associations for those exposed to hygienic parental smoking were nonsignificant (episodic memory and associative learning: RR = 1.19, 95% CI: 0.92, 1.54; short-term and spatial working memory: RR = 1.10, 95% CI: 0.85, 1.34). We conclude that avoiding childhood/adolescence secondhand smoke exposure promotes adulthood cognitive function.
Collapse
|
39
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
40
|
Liu Y, Li H, Li G, Kang Y, Shi J, Kong T, Yang X, Xu J, Li C, Su KP, Wang F. Active smoking, sleep quality and cerebrospinal fluid biomarkers of neuroinflammation. Brain Behav Immun 2020; 89:623-627. [PMID: 32717405 DOI: 10.1016/j.bbi.2020.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUNDS Cigarette smoking has been shown to be associated with sleep disorders and the related neuropathogenesis including neuroinflammation. Previous studies showed that pro- and anti-inflammatory cytokines are physiologically important in maintaining circadian function. In addition, sleep deprivation leads to immune dysregulations. However, no study has been published yet by using cerebrospinal fluid (CSF) biomarkers of neuroinflammation to investigate the relationship between active cigarette smoking and sleep disorders. METHODS CSF tissues from subjects of 191 male subjects (non-smokers n = 104; active smokers n = 87) receiving local anesthesia before surgery for anterior cruciate ligament injuries were obtained after the assessment of clinical information and Pittsburgh Sleep Quality Index (PSQI). The levels of tumor necrosis factor alpha (TNFα), Interleukin (IL) 1 beta (IL1β), IL2, IL4, IL6 and IL10 were measured using radioimmunoassay and ELISA. RESULTS PSQI scores were significantly higher in active smokers than that in non-smokers (p < 0.001, Cohen's d = 0.63). Significantly higher levels of CSF TNFα were found in active smokers compared to non-smokers (28 ± 1.97 vs. 22.97 ± 2.48, p < 0.05, Cohen's d = 2.23). There was a positive correlation between CSF IL1β levels and PSQI scores in non-smokers (r = 0.31, p = 0.01, adjustment R-Squared = 0.11). DISCUSSION This is the first study to reveal the association between higher CSF TNFα levels and poorer sleep quality in active smoking. In addition, CSF IL1β levels might be a potential biomarker in central nervous system for circadian dysregulation.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China; Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot 010110, China
| | - Guohua Li
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot 010110, China
| | - Jianping Shi
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China
| | - Tiantian Kong
- The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China
| | - Xiaoyu Yang
- Beijing Jishuitan Hospital, Beijing 100035, China
| | - Jinzhong Xu
- The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, China
| | - Cunbao Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot 010110, China
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China; The Second Affiliated Hospital, Xinjiang Medical University, Urumqi 830063, China.
| |
Collapse
|
41
|
Khaled S, Makled MN, Nader MA. Tiron protects against nicotine-induced lung and liver injury through antioxidant and anti-inflammatory actions in rats in vivo. Life Sci 2020; 260:118426. [PMID: 32937159 DOI: 10.1016/j.lfs.2020.118426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
AIMS Tobacco smoking is a major health problem associated with lung and liver damage. Lung and liver damage secondary to tobacco smoking is mediated through nicotine-induced oxidative stress. Therefore, we hypothesized that antioxidant treatment with tiron may improve nicotine-induced lung and liver damage. MATERIALS AND METHODS Rats were divided into six groups, a control, nicotine (10 mg/kg/day, i.p.; for 8 weeks) and tiron (100 or 200 mg/kg/day, i.p.; for 8 weeks) with or without nicotine administration. KEY FINDINGS Tiron improved survival rate and attenuated lung and liver damage as reflected by decreased total and differential cell counts, lactate dehydrogenase (LDH) activity in bronchoalveolar lavage fluid (BALF) and decreased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in serum; also histopathological examination confirmed the protective effect of tiron in lung and liver tissues of nicotine treated rats. Tiron attenuated dyslipidemia, which is associated with nicotine. These ameliorative effects of tiron may be mainly due to its antioxidant effect as proved by a significant decrease in malondialdehyde (MDA) content, reactive oxygen species (ROS) and total nitrite/nitrate (NOx) levels, and increase in reduced glutathione (GSH) level, catalase (CAT) and superoxide dismutase (SOD) activities. This is likely related to suppression of protein levels of NADPH oxidase enzyme (NOX1), inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NF-κB) and tumor necrosis factor alpha (TNF-α); and up-regulation of protein levels of nuclear factor erythroid-2 (Nrf2). SIGNIFICANCE This makes tiron (synthetic analogue of vitamin E) good candidate for future use to minimize nicotine's hazards among smokers.
Collapse
Affiliation(s)
- Shimaa Khaled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Horus University, Egypt.
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
42
|
Cornwell WD, Sriram U, Seliga A, Zuluaga-Ramirez V, Gajghate S, Rom S, Winfield M, Heldt NA, Ambrose D, Rogers TJ, Persidsky Y. Tobacco smoke and morphine alter peripheral and CNS inflammation following HIV infection in a humanized mouse model. Sci Rep 2020; 10:13977. [PMID: 32814790 PMCID: PMC7438518 DOI: 10.1038/s41598-020-70374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Tobacco smoking is common in HIV-infected patients, and is prevalent among intravenous opiate abusers. Conversely, intravenous opiate abusers are more likely HIV-infected, and opiate abuse is associated with more severe neuroinflammation. Given the coincident use of tobacco smoking among HIV-infected intravenous drug users (IVDUs), we set out to study the effects of smoke exposure, chronic morphine administration, and HIV infection using the NSG humanized mouse model. Our results show that smoke, morphine, and the combination promotes the decline in CD4+ T cells in HIV-infected mice. Further, chronic morphine administration increases the numbers of circulating CD8+ T cells which express the inhibitory receptor PD-1, as well as the cytolytic proteins perforin and granzyme B in the infected mice. We also found that the combination of smoke and morphine inhibited the expression of IL-1α, IL-4 and IL-17A. Finally, the combination of smoke and morphine exposure induces microglial activation following infection, as well as in the absence of HIV infection. To our knowledge, this is the first report to assess the combined effects of smoke and chronic morphine exposure on the inflammation associated with HIV infection, and demonstrate that these two insults exert significant neuroinflammatory activity.
Collapse
Affiliation(s)
- William D Cornwell
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Alecia Seliga
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - David Ambrose
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
43
|
Collett G, Craenen K, Young W, Gilhooly M, Anderson RM. The psychological consequences of (perceived) ionizing radiation exposure: a review on its role in radiation-induced cognitive dysfunction. Int J Radiat Biol 2020; 96:1104-1118. [PMID: 32716221 DOI: 10.1080/09553002.2020.1793017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Exposure to ionizing radiation following environmental contamination (e.g., the Chernobyl and Fukushima nuclear accidents), radiotherapy and diagnostics, occupational roles and space travel has been identified as a possible risk-factor for cognitive dysfunction. The deleterious effects of high doses (≥1.0 Gy) on cognitive functioning are fairly well-understood, while the consequences of low (≤0.1 Gy) and moderate doses (0.1-1.0 Gy) have been receiving more research interest over the past decade. In addition to any impact of actual exposure on cognitive functioning, the persistent psychological stress arising from perceived exposure, particularly following nuclear accidents, may itself impact cognitive functioning. In this review we offer a novel interdisciplinary stance on the cognitive impact of radiation exposure, considering psychological and epidemiological observations of different exposure scenarios such as atomic bombings, nuclear accidents, occupational and medical exposures while accounting for differences in dose, rate of exposure and exposure type. The purpose is to address the question that perceived radiation exposure - even where the actual absorbed dose is 0.0 Gy above background dose - can result in psychological stress, which could in turn lead to cognitive dysfunction. In addition, we highlight the interplay between the mechanisms of perceived exposure (i.e., stress) and actual exposure (i.e., radiation-induced cellular damage), in the generation of radiation-induced cognitive dysfunction. In all, we offer a comprehensive and objective review addressing the potential for cognitive defects in the context of low- and moderate-dose IR exposures. CONCLUSIONS Overall the evidence shows prenatal exposure to low and moderate doses to be detrimental to brain development and subsequent cognitive functioning, however the evidence for adolescent and adult low- and moderate-dose exposure remains uncertain. The persistent psychological stress following accidental exposure to low-doses in adulthood may pose a greater threat to our cognitive functioning. Indeed, the psychological implications for instructed cohorts (e.g., astronauts and radiotherapy patients) is less clear and warrants further investigation. Nonetheless, the psychosocial consequences of low- and moderate-dose exposure must be carefully considered when evaluating radiation effects on cognitive functioning, and to avoid unnecessary harm when planning public health response strategies.
Collapse
Affiliation(s)
- George Collett
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Kai Craenen
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - William Young
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mary Gilhooly
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Rhona M Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
44
|
Abstract
Multiple sclerosis (MS) is a common, severe neurological disease that affects millions of people worldwide. Nevertheless, the actual cause of MS remains unknown. Smoking has been studied with respect to MS development and progression. The objectives of this review were to examine the relationship between smoking and MS and to understand the possible molecular mechanisms underlying the association. PubMed was searched for articles related to the study topic published between 2012 and 2020 using the search terms "multiple sclerosis," "smoking," "risk factors," "cigarettes," and "molecular mechanisms." Studies show a significant relationship between smoking and the risk of MS. Furthermore, smoking has been linked to the progression of MS at the patient and population levels. However, the underlying mechanism remains to be explored in further studies; researchers still disagree on how the relationship between smoking and MS arises in different populations. Evidence from randomized controlled trials, systematic reviews, and epidemiological studies shows that smokers have a higher risk of developing MS and experiencing related adverse symptoms and complications.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Giessen, Hessen Germany.
| |
Collapse
|
45
|
Kangiser MM, Thomas AM, Kaiver CM, Lisdahl KM. Nicotine Effects on White Matter Microstructure in Young Adults. Arch Clin Neuropsychol 2020; 35:10-21. [PMID: 31009035 DOI: 10.1093/arclin/acy101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/11/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Nicotine use is widely prevalent among youth, and is associated with white matter microstructural changes as measured by diffusion tensor imaging (DTI). In adults, nicotine use is generally associated with lower fractional anisotropy (FA), but in adolescents/young adults (≤30 years), microstructure appears healthier, indicated by higher FA. This cross-sectional study examined associations between nicotine use and white matter microstructure using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in young adults. METHODS Fifty-three participants (18 nicotine users [10 female]/35 controls [17 female]) ages 18-25 underwent MRI scan, neuropsychological battery, toxicology screening, and drug use interview. Nicotine group associations with FA and MD were examined in various white matter tracts. In significant tracts, AD and RD were measured. Exploratory correlations were conducted between significant tracts and verbal memory and sustained attention/working memory performance. RESULTS Nicotine users exhibited significantly lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, left superior longitudinal fasciculus-temporal, and left uncinate fasciculus. In these tracts, AD and RD did not differ, nor did MD differ in any tract. White matter quality was positively correlated with sustained attention/working memory performance. CONCLUSIONS Cigarette smoking may disrupt white matter microstructure. These results are consistent with adult studies, but inconsistent with adolescent/young adult studies, likely due to methodological and sample age differences. Further studies should examine longitudinal effects of nicotine use on white matter microstructure in a larger sample.
Collapse
Affiliation(s)
- Megan M Kangiser
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Alicia M Thomas
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Christine M Kaiver
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Krista M Lisdahl
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
46
|
Hillmer AT, Matuskey D, Huang Y, Nabulsi N, Ropchan J, Carson RE, O'Malley SS, Cosgrove KP. Tobacco Smoking in People Is Not Associated with Altered 18-kDa Translocator Protein Levels: A PET Study. J Nucl Med 2020; 61:1200-1204. [PMID: 32005773 DOI: 10.2967/jnumed.119.237735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of tobacco smoking on the immune system of the brain are not well elucidated. Although nicotine is immunosuppressive, other constituents in tobacco smoke have inflammatory effects. PET imaging of the 18-kDa translocator protein (TSPO) provides a biomarker for microglia, the primary immunocompetent cells of the brain. This work compared brain TSPO levels in 20 tobacco smokers (abstinent for at least 2 h) and 20 nonsmokers using a fully quantitative modeling approach for the first time, to our knowledge. Methods: 11C-PBR28 (N-((2-(methoxy-11C)-phenyl)methyl)-N-(6-phenoxy-3-pyridinyl)acetamide) PET scans were acquired with arterial blood sampling to estimate the metabolite-corrected input function. 11C-PBR28 volumes of distribution were estimated throughout the brain with multilinear analysis. Results: Statistical analyses revealed no evidence of significant differences in regional 11C-PBR28 volumes of distribution between smokers and nonsmokers (whole-brain Cohen d = 0.09) despite adequate power to detect medium effect sizes. Conclusion: These findings inform previous PET studies reporting lower TSPO radiotracer concentrations in the brain (measured as SUV) for tobacco smokers than for nonsmokers by demonstrating the importance of accounting for radiotracer concentrations in plasma. These findings suggest that nonsmokers and smokers have comparable TSPO levels in the brain. Additional work with other biomarkers is needed to fully characterize the effects of tobacco smoking on the brain immune system.
Collapse
Affiliation(s)
- Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut .,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
| | - Stephanie S O'Malley
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Yale University PET Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
47
|
Affiliation(s)
- Mattia Rosso
- Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, Massachusetts
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Mohammed EM. Environmental Influencers, MicroRNA, and Multiple Sclerosis. J Cent Nerv Syst Dis 2020; 12:1179573519894955. [PMID: 32009827 PMCID: PMC6971968 DOI: 10.1177/1179573519894955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a complex neurological disorder characterized by an aberrant immune system that affects patients' quality of life. Several environmental factors have previously been proposed to associate with MS pathophysiology, including vitamin D deficiency, Epstein-Barr virus (EBV) infection, and cigarette smoking. These factors may influence cellular molecularity, interfering with cellular proliferation, differentiation, and apoptosis. This review argues that small noncoding RNA named microRNA (miRNA) influences these factors' mode of action. Dysregulation in the miRNAs network may deeply impact cellular hemostasis, thereby possibly resulting in MS pathogenicity. This article represents a literature review and an author's theory of how environmental factors may induce dysregulations in the miRNAs network, which could ultimately affect MS pathogenicity.
Collapse
|
49
|
Do VQ, Park KH, Seo YS, Park JM, Kim B, Kim SK, Sung JH, Lee MY. Inhalation exposure to cigarette smoke induces endothelial nitric oxide synthase uncoupling and enhances vascular collagen deposition in streptozotocin-induced diabetic rats. Food Chem Toxicol 2019; 136:110988. [PMID: 31759066 DOI: 10.1016/j.fct.2019.110988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022]
Abstract
Smoking is an acknowledged risk factor for vascular disorders, and vascular complication is a main outcome of diabetes. Hence, we investigated the impact of cigarette smoke on blood vessels in diabetes, postulating that smoking might aggravate diabetic vascular impairment. Sprague-Dawley rats were divided into four groups: control, cigarette smoke-exposed, diabetic, and cigarette smoke-exposed diabetic groups. Streptozotocin-induced diabetic rats were exposed to cigarette smoke by inhalation at total particulate matter concentration of 200 μg/L for 4 h/day, 5 day/week for a total of 4 weeks. Diabetes caused structural change of aorta, but additional cigarette smoke exposure did not induce further alteration. Collagen, a marker for fibrosis, was increased in media of diabetic aorta, and this increase was augmented by cigarette smoke. Cigarette smoke induced endothelial nitric oxide synthase (eNOS) uncoupling in the diabetic group. Malondialdehyde was increased and glutathione was decreased in blood from diabetes, but these effects were not exaggerated by cigarette smoke. Cigarette smoke caused NADPH oxidase (NOX) 2 expression in diabetic aorta and enhanced diabetes-induced NOX4 expression in aorta. Taken together, cigarette smoke exposure can aggravate vascular fibrosis and induce eNOS uncoupling in diabetes under experimental condition, suggesting that smoking might exacerbate diabetic vascular impairments.
Collapse
Affiliation(s)
- Van Quan Do
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kwang-Hoon Park
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yoon-Seok Seo
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jung-Min Park
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Hyuck Sung
- Bio Technology Division, Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
50
|
Wu P, Li W, Cai X, Yan H, Chen M. Associations of cigarette smoking with memory decline and neurodegeneration among cognitively normal older individuals. Neurosci Lett 2019; 714:134563. [PMID: 31678372 DOI: 10.1016/j.neulet.2019.134563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
Cigarette smoking is associated with a higher risk of Alzheimer's disease (AD), but the underlying mechanisms remain to be clarified. In this study, we aimed to examine the effects of cigarette smoking on multiple AD biomarkers among older individuals with normal cognition (NC). Among 415 older individuals with NC from the Alzheimer's disease Neuroimaging Initiative (ADNI) cohort, we examined the associations between smoking status (non-smokers vs smokers) and global cognition, verbal memory, hippocampal volumes, cerebral glucose metabolism and CSF AD pathologies. The primary findings of this study were: (1) In NC, smokers showed worse performance on verbal memory tests [Rey Auditory Verbal Learning Test (RAVLT) total learning score and delayed recall] than non-smokers; (2) Compared with non-smokers, smokers had significantly lower HpVR; (3) Smokers, relative to non-smokers, demonstrated lower levels of cerebral glucose metabolism as measured by FDG-PET; and (4) there were no significant differences in CSF AD pathologies (CSF Aβ42, t-tau or p-tau) between non-smokers and smokers. Longitudinal studies are needed to investigate the relationship between cigarettes smoking and changes in AD-related markers over time. Further, ADNI participants were highly educated and predominantly white. This may limit the generalizability of our results. In summary, among individuals with NC, cigarette smoking was associated with memory impairment, hippocampal atrophy and cerebral glucose hypometabolism, but not CSF AD pathologies.
Collapse
Affiliation(s)
- Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Wenya Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xueding Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hanhan Yan
- Department of Respiratory Medicine, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Ruian 325200, PR China.
| | - Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|