1
|
Saez-Calveras N, Brewster AL, Stuve O. The validity of animal models to explore the pathogenic role of the complement system in multiple sclerosis: A review. Front Mol Neurosci 2022; 15:1017484. [PMID: 36311030 PMCID: PMC9606595 DOI: 10.3389/fnmol.2022.1017484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Animal models of multiple sclerosis (MS) have been extensively used to characterize the disease mechanisms in MS, as well as to identify potential pharmacologic targets for this condition. In recent years, the immune complement system has gained increased attention as an important effector in the pathogenesis of MS. Evidence from histological, serum, and CSF studies of patients supports an involvement of complement in both relapsing-remitting and progressive MS. In this review, we discuss the history and advances made on the use of MS animal models to profile the effects of the complement system in this condition. The first studies that explored the complement system in the context of MS used cobra venom factor (CVF) as a complement depleting agent in experimental autoimmune encephalomyelitis (EAE) Lewis rats. Since then, multiple mice and rat models of MS have revealed a role of C3 and the alternative complement cascade in the opsonization and phagocytosis of myelin by microglia and myeloid cells. Studies using viral vectors, genetic knockouts and pharmacologic complement inhibitors have also shown an effect of complement in synaptic loss. Antibody-mediated EAE models have revealed an involvement of the C1 complex and the classical complement as an effector of the humoral response in this disease. C1q itself may also be involved in modulating microglia activation and oligodendrocyte differentiation in these animals. In addition, animal and in vitro models have revealed that multiple complement factors may act as modulators of both the innate and adaptive immune responses. Finally, evidence gathered from mice models suggests that the membrane attack complex (MAC) may even exert protective roles in the chronic stages of EAE. Overall, this review summarizes the importance of MS animal models to better characterize the role of the complement system and guide future therapeutic approaches in this condition.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Parkland Hospital, Dallas, TX, United States
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Dallas, TX, United States
- Peter O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
2
|
Weinstock C. Association of Blood Group Antigen CD59 with Disease. Transfus Med Hemother 2022; 49:13-24. [PMID: 35221864 PMCID: PMC8832213 DOI: 10.1159/000521174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/25/2021] [Indexed: 08/01/2023] Open
Abstract
In 2014, the membrane-bound protein CD59 became a blood group antigen. CD59 has been known for decades as an inhibitor of the complement system, located on erythrocytes and on many other cell types. In paroxysmal nocturnal haemoglobinuria (PNH), a stem cell clone with acquired deficiency to express GPI-anchored molecules, including the complement inhibitor CD59, causes severe and life-threatening disease. The lack of CD59, which is the only membrane-bound inhibitor of the membrane attack complex, contributes a major part of the intravascular haemolysis observed in PNH patients. This crucial effect of CD59 in PNH disease prompted studies to investigate its role in other diseases. In this review, the role of CD59 in inflammation, rheumatic disease, and age-related macular degeneration is investigated. Further, the pivotal role of CD59 in PNH and congenital CD59 deficiency is reviewed.
Collapse
|
3
|
Moritz CP, Tholance Y, Stoevesandt O, Ferraud K, Camdessanché JP, Antoine JC. CIDP Antibodies Target Junction Proteins and Identify Patient Subgroups: An Autoantigenomic Approach. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/2/e944. [PMID: 33408168 PMCID: PMC7862091 DOI: 10.1212/nxi.0000000000000944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To discover systemic characteristics in the repertoires of targeted autoantigens in chronic inflammatory demyelinating polyneuropathy (CIDP), we detected the entire autoantigen repertoire of patients and controls and analyzed them systematically. METHODS We screened 43 human serum samples, of which 22 were from patients with CIDP, 12 from patients with other neuropathies, and 9 from healthy controls via HuProt Human Proteome microarrays testing about 16,000 distinct human bait proteins. Autoantigen repertoires were analyzed via bioinformatical autoantigenomic approaches: principal component analysis, analysis of the repertoire sizes in disease groups and clinical subgroups, and overrepresentation analyses using Gene Ontology and PantherDB. RESULTS The autoantigen repertoires enabled the identification of a subgroup of 10/22 patients with CIDP with a younger age at onset and a higher frequency of mixed motor and sensory CIDP. IV immunoglobulin therapy responders targeted 3 times more autoantigens than nonresponders. No CIDP-specific autoantibody is present in all patients; however, anchoring junction components were significantly targeted by 86.4% of patients with CIDP. There are potential novel CIDP-specific autoantigens such as the myelination- or axo-glial structure-related proteins actin-related protein 2/3 complex subunit 1B, band 4.1-like protein 2, cadherin-15, cytohesin-1, epidermal growth factor receptor, ezrin, and radixin. CONCLUSIONS The repertoire of targeted autoantigens of patients with CIDP differs in a systematic degree from those of controls. Systematic autoantigenomic approaches can help to understand the disease and to discover novel bioinformatical tools and novel autoantigen panels to improve diagnosis, treatment, prognosis, or patient stratification.
Collapse
Affiliation(s)
- Christian P Moritz
- From the Department of Neurology (C.P.M., K.F., J.-P.C., J.-C.A.), and Department of Biochemistry (Y.T.), University Hospital of Saint-Etienne; Synaptopathies and Autoantibodies (C.P.M., Y.T., J.-P.C., J.-C.A.), Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean-Monnet, Saint-Étienne, France; and Cambridge Protein Arrays Ltd. (O.S.), Babraham Research Campus, United Kingdom.
| | - Yannick Tholance
- From the Department of Neurology (C.P.M., K.F., J.-P.C., J.-C.A.), and Department of Biochemistry (Y.T.), University Hospital of Saint-Etienne; Synaptopathies and Autoantibodies (C.P.M., Y.T., J.-P.C., J.-C.A.), Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean-Monnet, Saint-Étienne, France; and Cambridge Protein Arrays Ltd. (O.S.), Babraham Research Campus, United Kingdom
| | - Oda Stoevesandt
- From the Department of Neurology (C.P.M., K.F., J.-P.C., J.-C.A.), and Department of Biochemistry (Y.T.), University Hospital of Saint-Etienne; Synaptopathies and Autoantibodies (C.P.M., Y.T., J.-P.C., J.-C.A.), Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean-Monnet, Saint-Étienne, France; and Cambridge Protein Arrays Ltd. (O.S.), Babraham Research Campus, United Kingdom
| | - Karine Ferraud
- From the Department of Neurology (C.P.M., K.F., J.-P.C., J.-C.A.), and Department of Biochemistry (Y.T.), University Hospital of Saint-Etienne; Synaptopathies and Autoantibodies (C.P.M., Y.T., J.-P.C., J.-C.A.), Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean-Monnet, Saint-Étienne, France; and Cambridge Protein Arrays Ltd. (O.S.), Babraham Research Campus, United Kingdom
| | - Jean-Philippe Camdessanché
- From the Department of Neurology (C.P.M., K.F., J.-P.C., J.-C.A.), and Department of Biochemistry (Y.T.), University Hospital of Saint-Etienne; Synaptopathies and Autoantibodies (C.P.M., Y.T., J.-P.C., J.-C.A.), Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean-Monnet, Saint-Étienne, France; and Cambridge Protein Arrays Ltd. (O.S.), Babraham Research Campus, United Kingdom
| | - Jean-Christophe Antoine
- From the Department of Neurology (C.P.M., K.F., J.-P.C., J.-C.A.), and Department of Biochemistry (Y.T.), University Hospital of Saint-Etienne; Synaptopathies and Autoantibodies (C.P.M., Y.T., J.-P.C., J.-C.A.), Institut NeuroMyoGène, INSERM U1217/CNRS UMR 5310, University of Lyon, University Jean-Monnet, Saint-Étienne, France; and Cambridge Protein Arrays Ltd. (O.S.), Babraham Research Campus, United Kingdom
| |
Collapse
|
4
|
Duchateau L, Martín-Aguilar L, Lleixà C, Cortese A, Dols-Icardo O, Cervera-Carles L, Pascual-Goñi E, Diaz-Manera J, Calegari I, Franciotta D, Rojas-Garcia R, Illa I, Clarimon J, Querol L. Absence of pathogenic mutations in CD59 in chronic inflammatory demyelinating polyradiculoneuropathy. PLoS One 2019; 14:e0212647. [PMID: 30794663 PMCID: PMC6386293 DOI: 10.1371/journal.pone.0212647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Mutations in CD59 cause CIDP-like polyneuropathy in children with inherited chronic hemolysis. We hypothesized that mutations in CD59 might be found in a subset of sporadic CIDP patients. METHODS 35 patients from two centers, fulfilling the EFNS/PNS diagnostic criteria for CIDP were included. CD59 coding region was amplified by PCR and Sanger sequenced. RESULTS One rare variant was detected in a patient which resulted in a synonymous change and predicted to be neutral. Pathogenic variants were absent in our cohort. INTERPRETATION Our pilot study suggests that mutations in CD59 are absent in adult-onset sporadic CIDP.
Collapse
Affiliation(s)
- Lena Duchateau
- Memory Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lorena Martín-Aguilar
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Oriol Dols-Icardo
- Memory Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro para la Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Cervera-Carles
- Memory Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro para la Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elba Pascual-Goñi
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Diaz-Manera
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | - Ricard Rojas-Garcia
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jordi Clarimon
- Memory Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro para la Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Luis Querol
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
5
|
Miyaji K, Paul F, Shahrizaila N, Umapathi T, Yuki N. Autoantibodies to tetraspanins (CD9, CD81 and CD82) in demyelinating diseases. J Neuroimmunol 2015; 291:78-81. [PMID: 26857499 DOI: 10.1016/j.jneuroim.2015.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 11/27/2015] [Accepted: 12/28/2015] [Indexed: 01/10/2023]
Abstract
Tetraspanin family proteins, CD9, CD81 and CD82 are expressed in the oligodendrocytes and Schwann cells. We investigated autoantibodies to tetraspanin proteins in patients with demyelinating diseases. Sera were collected from 119 multiple sclerosis patients, 19 neuromyelitis optica, 42 acute inflammatory demyelinating polyneuropathy, 23 chronic inflammatory demyelinating polyneuropathy and 13 acute motor axonal neuropathy as well as 55 healthy controls. Few multiple sclerosis and acute inflammatory demyelinating polyneuropathy patients had autoantibodies that were weakly reactive to CD9 or CD81 but the significance is unclear. It is unlikely that these autoantibodies are pathogenic or serve as potential biomarkers in demyelinating diseases.
Collapse
Affiliation(s)
- Kazuki Miyaji
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Friedemann Paul
- NeuroCure Clinical Research and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Nobuhiro Yuki
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
6
|
Dominant and Protective Role of the CYTH4 Primate-Specific GTTT-Repeat Longer Alleles Against Neurodegeneration. J Mol Neurosci 2015; 56:593-6. [PMID: 25823437 DOI: 10.1007/s12031-015-0542-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/06/2015] [Indexed: 12/25/2022]
Abstract
Primate-specific genes and regulatory mechanisms could provide insight into human brain functioning and disease. In a genome-scale analysis of the entire protein-coding genes listed in the GeneCards database, we have recently reported human genes that contain "exceptionally long" short tandem repeats (STRs) in their core promoter, which may be of adaptive/selective evolutionary advantage in this species. The longest tetra-nucleotide repeat identified in a human gene core promoter belongs to the CYTH4 gene. This GTTT-repeat is specific to Hominidae and Old World monkeys, and the shortest allele of this repeat, (GTTT)6, is linked with neural dysfunction and type I bipolar disorder in human. In the present study, we sought a possibly broader role for the CYTH4 gene core promoter GTTT-repeat in neural functioning and investigated its allelic distribution in a total of 949 human subjects, consisting of two neurodegenerative disorders, multiple sclerosis (MS) (n = 272) and Alzheimer's disease (AD) (n = 257), and controls (n = 420). The range of the alleles of this GTTT-repeat in the human sample studied was between 6- and 9-repeats. The shortest allele, (GTTT)6, was significantly in excess in the MS and AD patients in comparison with the controls (p < 0.004). The 6/6, 6/7, and 7/7 genotypes were in excess in the MS and AD patients, whereas the overall frequency of all other genotypes (consisting of at least one longer allele, i.e., 8- or 9-repeat) was higher in the controls (p < 0.005), indicating a dominant and protective effect for the longer alleles against neurodegeneration. This is the first indication of the involvement of a primate-specific STR in neurodegeneration in humans. We propose an adaptive evolutionary role for the expansion of the CYTH4 gene core promoter GTTT-repeat in the human brain, which is supported by a link between the shortest allele of this repeat with neuropsychiatric disorders.
Collapse
|