2
|
Engel S, Jolivel V, Kraus SHP, Zayoud M, Rosenfeld K, Tumani H, Furlan R, Kurschus FC, Waisman A, Luessi F. Laquinimod dampens IL-1β signaling and Th17-polarizing capacity of monocytes in patients with MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e908. [PMID: 33203651 PMCID: PMC7676421 DOI: 10.1212/nxi.0000000000000908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To assess the impact of laquinimod treatment on monocytes and to investigate the underlying immunomodulatory mechanisms in MS. METHODS In this cross-sectional study, we performed in vivo and in vitro analyses of cluster of differentiation (CD14+) monocytes isolated from healthy donors (n = 15), untreated (n = 13), and laquinimod-treated patients with MS (n = 14). Their frequency and the expression of surface activation markers were assessed by flow cytometry and the viability by calcein staining. Cytokine concentrations in the supernatants of lipopolysaccharide (LPS)-stimulated monocytes were determined by flow cytometry. The messenger ribonucleic acid (mRNA) expression level of genes involved in cytokine expression was measured by quantitative PCR. The LPS-mediated nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation was determined by the quantification of the phosphorylation level of the p65 subunit. Laquinimod-treated monocytes were cocultured with CD4+ T cells, and the resulting cytokine production was analyzed by flow cytometry after intracellular cytokine staining. The interleukin (IL)-17A concentration of the supernatant was assessed by ELISA. RESULTS Laquinimod did not alter the frequency or viability of circulating monocytes, but led to an upregulation of CD86 expression. LPS-stimulated monocytes of laquinimod-treated patients with MS secreted less IL-1β following a downregulation of IL-1β gene expression. Phosphorylation levels of the NF-κB p65 subunit were reduced after laquinimod treatment, indicating a laquinimod-associated inhibition of the NF-κB pathway. T cells primed with laquinimod-treated monocytes differentiated significantly less into IL-17A-producing T helper (Th)-17 cells. CONCLUSIONS Our findings suggest that inhibited NF-κB signaling and downregulation of IL-1β expression in monocytes contributes to the immunomodulatory effects of laquinimod and that the impairment of Th17 polarization might mediate its disease-modifying activity in MS.
Collapse
Affiliation(s)
- Sinah Engel
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Valérie Jolivel
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan H-P Kraus
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Morad Zayoud
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Karolina Rosenfeld
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Hayrettin Tumani
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Roberto Furlan
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Florian C Kurschus
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Ari Waisman
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Luessi
- From the Department of Neurology (S.E., V.J., S.H.-P.K., K.R., F.L.), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University of Mainz, Germany; Biopathology of Myelin (V.J.), Neuroprotection and Therapeutic Strategy, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, France; Institute for Molecular Medicine (M.Z., F.C.K., A.W.), University Medical Centre of the Johannes Gutenberg University of Mainz, Germany; Sheba Cancer Research Center (M.Z.), Chaim Sheba Academic Medical Center, Ramat Gan, Israel; Department of Neurology (H.T.), University of Ulm, Germany and Specialty Clinic of Neurology Dietenbronn, Schwendi, Germany; Clinical Neuroimmunology Unit (R.F.), San Raffaele Scientific Institute, Milan, Italy; and Department of Dermatology (F.C.K.), Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Wilmes AT, Reinehr S, Kühn S, Pedreiturria X, Petrikowski L, Faissner S, Ayzenberg I, Stute G, Gold R, Dick HB, Kleiter I, Joachim SC. Laquinimod protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model. J Neuroinflammation 2018; 15:183. [PMID: 29903027 PMCID: PMC6002998 DOI: 10.1186/s12974-018-1208-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The oral immunomodulatory agent laquinimod is currently evaluated for multiple sclerosis (MS) treatment. Phase II and III studies demonstrated a reduction of degenerative processes. In addition to anti-inflammatory effects, laquinimod might have neuroprotective properties, but its impact on the visual system, which is often affected by MS, is unknown. The aim of our study was to investigate potential protective effects of laquinimod on the optic nerve and retina in an experimental autoimmune encephalomyelitis (EAE) model. METHODS We induced EAE in C57/BL6 mice via MOG35-55 immunization. Animals were divided into an untreated EAE group, three EAE groups receiving laquinimod (1, 5, or 25 mg/kg daily), starting the day post-immunization, and a non-immunized control group. Thirty days post-immunization, scotopic electroretinograms were carried out, and mice were sacrificed for histopathology (HE, LFB), immunohistochemistry (MBP, Iba1, Tmem119, F4/80, GFAP, vimentin, Brn-3a, cleaved caspase 3) of the optic nerve and retina, and retinal qRT-PCR analyses (Brn-3a, Iba1, Tmem119, AMWAP, CD68, GFAP). To evaluate the effect of a therapeutic approach, EAE animals were treated with 25 mg/kg laquinimod from day 16 when 60% of the animals had developed clinical signs of EAE. RESULTS Laquinimod reduced neurological EAE symptoms and improved the neuronal electrical output of the inner nuclear layer compared to untreated EAE mice. Furthermore, cellular infiltration, especially recruited phagocytes, and demyelination in the optic nerve were reduced. Microglia were diminished in optic nerve and retina. Retinal macroglial signal was reduced under treatment, whereas in the optic nerve macroglia were not affected. Additionally, laquinimod preserved retinal ganglion cells and reduced apoptosis. A later treatment with laquinimod in a therapeutic approach led to a reduction of clinical signs and to an improved b-wave amplitude. However, no changes in cellular infiltration and demyelination of the optic nerves were observed. Also, the number of retinal ganglion cells remained unaltered. CONCLUSION From our study, we deduce neuroprotective and anti-inflammatory effects of laquinimod on the optic nerve and retina in EAE mice, when animals were treated before any clinical signs were noted. Given the fact that the visual system is frequently affected by MS, the agent might be an interesting subject of further neuro-ophthalmic investigations.
Collapse
Affiliation(s)
- Anna T Wilmes
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sandra Kühn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Xiomara Pedreiturria
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Laura Petrikowski
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Simon Faissner
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791, Bochum, Germany.
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|