1
|
Ghahramanipour Z, Alipour S, Masoumi J, Rostamlou A, Hatami-Sadr A, Heris JA, Naseri B, Jafarlou M, Baradaran B. Regulation of Dendritic Cell Functions by Vitamins as Promising Therapeutic Strategy for Immune System Disorders. Adv Biol (Weinh) 2023; 7:e2300142. [PMID: 37423961 DOI: 10.1002/adbi.202300142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Indexed: 07/11/2023]
Abstract
A functional immune system is crucial for a healthy life, protecting from infections, tumors, or autoimmune disorders; these are accomplished by the interaction between various immune cells. Nourishment, particularly micronutrients, are very important components in the immune system balance, therefore this review emphasizes the vitamins (D, E, A, C) and Dendritic cells' subsets due to vitamins' roles in immune processes, especially on dendritic cells' functions, maturation, and cytokine production. Current studies reveal significant benefits related to vitamins, including vitamin E, which can contribute to the control of dendritic cells' function and maturation. Furthermore, vitamin D plays an immunoregulatory and anti-inflammatory role in the immune system. Metabolite of vitamin A which is called retinoic acid leads to T cells' differentiation to T helper 1 or T helper 17, so low levels of this vitamin exacerbate the menace of infectious diseases, and vitamin C has anti-oxidant effects on dendritic cells and modulate their activation and differentiation program. Additionally, the correlation between the amount of vitamin and the occurrence or progression of allergic diseases and autoimmunity disorders is discussed according to the results of previous studies.
Collapse
Affiliation(s)
- Zahra Ghahramanipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665931, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, 35040, Turkey
| | | | - Javad Ahmadian Heris
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| |
Collapse
|
2
|
Daryabor G, Gholijani N, Kahmini FR. A review of the critical role of vitamin D axis on the immune system. Exp Mol Pathol 2023; 132-133:104866. [PMID: 37572961 DOI: 10.1016/j.yexmp.2023.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
In recent years, the physiological and molecular functions of vitamin D (Vit-D) have been deeply investigated. At first, Vit-D was considered a regulator of mineral and skeletal homeostasis. However, due to the extensive-expression pattern of Vit-D receptor (VDR) in almost every non-skeletal cell, Vit-D is considered mainly a multifunctional agent with broad effects on various tissues, notably the immune system. The expression of VDR in immune cells such as dendritic cells, monocyte/macrophage, neutrophils, B cells and T cells has been well demonstrated. Besides, such immune cells are capable of metabolizing the active form of Vit-D which means that it can module the immune system in both paracrine and autocrine manners. Vit-D binding protein (DBP), that regulates the levels and homeostasis of Vit-D, is another key molecule capable of modulating the immune system. Recent studies indicate that dysregulation of Vit-D axis, variations in the DBP and VDR genes, and Vit-D levels might be risk factors for the development of autoimmune disease. Here, the current evidence regarding the role of Vit-D axis on the immune system, as well as its role in the development of autoimmune disease will be clarified. Further insight will be given to those studies that investigated the association between single nucleotide polymorphisms of DBP and VDR genes with autoimmune disease susceptibility.
Collapse
Affiliation(s)
- Gholamreza Daryabor
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Gholijani
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Gezmis H, Mayda Domac F, Ormeci B, Uyanik H, Doran T, Keles EC, Kirac D. ε 2 , ε 3 , and ε 4 variants of ApoE; rs2228570 (VDR), rs4588 and rs7041 (VDBP) polymorphisms in patients with multiple sclerosis: A case-control study in Turkish population. Int J Clin Pract 2021; 75:e14801. [PMID: 34486787 DOI: 10.1111/ijcp.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
AIM OF THE STUDY Multiple sclerosis (MS) is a degenerative disease characterized by autoimmune demyelination in the central nervous system. Yet, underlined genetics or environmental markers are still controversial. The impact of vitamin D and cholesterol on disease activity has been phrased by many studies; however, the data available for the Turkish population are very limited. This study aimed to investigate the effect of vitamin D-related polymorphisms (VDBP and VDR) and cholesterol-related variants of ApoE on Turkish MS patients. MATERIALS AND METHODS Total DNAs were extracted from peripheral blood samples of 51 MS patients and 50 healthy volunteers. rs4588 and rs7041 polymorphisms of VDBP, rs2228570 of VDR, as well as ε2, ε3, and ε4 variants of ApoE, were investigated by RT-PCR. Biochemical parameters which thought to be associated with MS were also measured. Results were evaluated statistically. RESULTS Homozygous mutant genotype and G allele of rs2228570 in VDR, as well as heterozygous genotype of rs4588 in VDBP, were found statistically high in patients. Total cholesterol, triglyceride, and LDL-C levels were found significantly high, whereas HDL-C and vitamin D levels were low in patients. An association was found between rs4588 variation and high triglyceride levels. Similar correlations were found between ε2 genotype and low LDL-C level; ε3 genotype and higher LDL-C. Gender, triglyceride, HDL-C, and AA genotype in rs4588 had a significant effect on MS progression. CONCLUSION The variations of rs2228570 and rs4588, vitamin D deficiency, and biological parameters related to cholesterol metabolism may be associated with MS risk.
Collapse
Affiliation(s)
- Hazal Gezmis
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fusun Mayda Domac
- Department of Neurology, University of Health Sciences, Erenkoy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Turkey
| | - Burcu Ormeci
- Department of Neurology, Yeditepe University Hospital, Istanbul, Turkey
| | - Handan Uyanik
- Department of Neurology, Yeditepe University Hospital, Istanbul, Turkey
| | - Tansu Doran
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - E Cigdem Keles
- Department of Biostatistics, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Deniz Kirac
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
4
|
Cancela Díez B, Pérez-Ramírez C, Maldonado-Montoro MDM, Carrasco-Campos MI, Sánchez Martín A, Pineda Lancheros LE, Martínez-Martínez F, Calleja-Hernández MÁ, Ramírez-Tortosa MC, Jiménez-Morales A. Association between polymorphisms in the vitamin D receptor and susceptibility to multiple sclerosis. Pharmacogenet Genomics 2021; 31:40-47. [PMID: 33044390 DOI: 10.1097/fpc.0000000000000420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a neurodegenerative chronic inflammatory. Mutations in the vitamin D receptor (VDR) gene can substantially affect serum vitamin D levels or alter its functionality, and can consequently increase susceptibility to developing MS. The objective of this study was to evaluate the association between polymorphisms in the VDR gene and risk of MS in a (Spanish) Caucasian population. PATIENTS AND METHODS We conducted a retrospective case-control study comprising 209 patients with relapsing-remitting multiple sclerosis (RRMS) and 836 controls of Caucasian origin from southern Spain. The ApaI (rs7975232), BsmI (rs1544410), Cdx2 (rs11568820), FokI (rs2228570), and TaqI (rs731236) gene polymorphisms were determined by allelic discrimination real-time PCR using TaqMan probes. RESULTS The recessive logical regression model, adjusted for age and sex, revealed that the TT genotype for VDR FokI (rs2228570) polymorphism was associated with higher risk of MS (P = 0.0150; OR = 1.82; 95% CI = 1.12-2.94; TT vs. CT + CC). No association between the other polymorphisms and development of MS was found in any of the models analyzed. The haplotype analysis, adjusted for age, smoking, and sex, did not find any statistically significant association between the haplotypes analyzed and risk of MS. CONCLUSIONS The VDR FokI (rs2228570) polymorphism was significantly associated with developing MS. We found no influence of the ApaI (rs7975232), BsmI (rs1544410), Cdx2 (rs11568820), FokI (rs2228570), and TaqI (rs731236) gene polymorphisms on the risk of developing MS in our patients.
Collapse
Affiliation(s)
- Bárbara Cancela Díez
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas
| | - Cristina Pérez-Ramírez
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen Macarena, Dr. Fedriani, Sevilla
| | | | - María Isabel Carrasco-Campos
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas
| | - Almudena Sánchez Martín
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas
| | - Laura Elena Pineda Lancheros
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas
| | - Fernando Martínez-Martínez
- Department of Pharmacy and Pharmaceutical Technology, Social and Legal Assistance Pharmacy Section, Faculty of Pharmacy
| | | | - María Carmen Ramírez-Tortosa
- Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain
| | - Alberto Jiménez-Morales
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas
| |
Collapse
|
5
|
Moosavi E, Rafiei A, Yazdani Y, Eslami M, Saeedi M. Association of serum levels and receptor genes BsmI, TaqI and FokI polymorphisms of vitamin D with the severity of multiple sclerosis. J Clin Neurosci 2021; 84:75-81. [PMID: 33485603 DOI: 10.1016/j.jocn.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease. Vitamin D has a major role in preventing inflammatory disorders. Therefore, any alteration in vitamin D receptor (VDR) might be a genetic risk factor for MS development. This study aimed to evaluate the effect of serum levels and VDR FokI, BsmI, and TaqI gene polymorphisms on the severity of MS. METHODS This case-control study recruited 160 MS patients (71.9% females, mean age of 34.3 ± 8.3 years) and 162 (66.7% females, mean age 35.4 ± 7.9 year) age, sex, and ethnicity matched healthy controls. FokI (rs2228570), BsmI (rs1544410), and TaqI (rs731236) polymorphisms were carried out using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Demographic, clinical parameters, and the levels of vitamin D were compared between groups. RESULTS We found that the frequency of FokI and TaqI polymorphisms significantly differed between the patients and the controls (p = 0.0127 and p = 0.0236, respectively). The MS patients had low levels of vitamin D compared to the controls (p = 0.011). In addition, TaqI T/C polymorphism significantly decreased the levels of vitamin D in the MS patients (p = 0.002). However, there was no significant association between FokI or BsmI SNPs and the levels of vitamin D in MS patients (p > 0.5). CONCLUSION Our results suggest that FokI and TaqI polymorphisms of VDR are associated with MS risk and TaqI polymorphism is associated with Vitamin D levels in MS patients. Meanwhile, no difference was observed between VDR gene polymorphisms and any types of MS.
Collapse
Affiliation(s)
- Ensieh Moosavi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Yaghoub Yazdani
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mina Eslami
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
6
|
Ruiz-Ballesteros AI, Meza-Meza MR, Vizmanos-Lamotte B, Parra-Rojas I, de la Cruz-Mosso U. Association of Vitamin D Metabolism Gene Polymorphisms with Autoimmunity: Evidence in Population Genetic Studies. Int J Mol Sci 2020; 21:ijms21249626. [PMID: 33348854 PMCID: PMC7766382 DOI: 10.3390/ijms21249626] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
A high prevalence of vitamin D (calcidiol) serum deficiency has been described in several autoimmune diseases, including multiple sclerosis (MS), rheumatoid arthritis (AR), and systemic lupus erythematosus (SLE). Vitamin D is a potent immunonutrient that through its main metabolite calcitriol, regulates the immunomodulation of macrophages, dendritic cells, T and B lymphocytes, which express the vitamin D receptor (VDR), and they produce and respond to calcitriol. Genetic association studies have shown that up to 65% of vitamin D serum variance may be explained due to genetic background. The 90% of genetic variability takes place in the form of single nucleotide polymorphisms (SNPs), and SNPs in genes related to vitamin D metabolism have been linked to influence the calcidiol serum levels, such as in the vitamin D binding protein (VDBP; rs2282679 GC), 25-hydroxylase (rs10751657 CYP2R1), 1α-hydroxylase (rs10877012, CYP27B1) and the vitamin D receptor (FokI (rs2228570), BsmI (rs1544410), ApaI (rs7975232), and TaqI (rs731236) VDR). Therefore, the aim of this comprehensive literature review was to discuss the current findings of functional SNPs in GC, CYP2R1, CYP27B1, and VDR associated to genetic risk, and the most common clinical features of MS, RA, and SLE.
Collapse
Affiliation(s)
- Adolfo I. Ruiz-Ballesteros
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
| | - Mónica R. Meza-Meza
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias Biomédicas Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
| | - Barbara Vizmanos-Lamotte
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo Guerrero 39087, Mexico;
| | - Ulises de la Cruz-Mosso
- Grupo de Inmunonutrición y Genómica Nutricional en las Enfermedades Autoinmunes, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44160, Mexico; (A.I.R.-B.); (M.R.M.-M.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Programa de Doctorado en Ciencias de la Nutrición Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico;
- Programa de Doctorado en Ciencias Biomédicas Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara Jalisco 44340, Mexico
- Correspondence: ; Tel.: +52-1-331-744-15-75
| |
Collapse
|
7
|
Scazzone C, Agnello L, Bivona G, Lo Sasso B, Ciaccio M. Vitamin D and Genetic Susceptibility to Multiple Sclerosis. Biochem Genet 2020; 59:1-30. [PMID: 33159645 DOI: 10.1007/s10528-020-10010-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/22/2020] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS), resulting from the interaction among genetic, epigenetic, and environmental factors. Vitamin D is a secosteroid, and its circulating levels are influenced by environment and genetics. In the last decades, research data on the association between MS and vitamin D status led to hypothesize a possible role for hypovitaminosis D as a risk factor for MS. Some gene variants encoding proteins involved in vitamin D metabolism, transport, and function, which are responsible for vitamin D status alterations, have been related to MS susceptibility. This review explores the current literature on the influence of vitamin D-related genes in MS susceptibility, reporting all single-nucleotide polymorphisms (SNPs) investigated to date in 12 vitamin D pathway genes. Among all, the gene codifying vitamin D receptor (VDR) is the most studied. The association between VDR SNPs and MS risk has been reported by many Authors, with a few studies producing opposite results. Other vitamin D-related genes (including DHCR7/NADSYN1, CYP2R1, CYP27A1, CYP3A4, CYP27B1, CYP24A1, Megalin-DAB2-Cubilin, FGF-23, and Klotho) have been less investigated and achieved more conflicting evidence. Taken together, findings from the studies reviewed cannot clarify whether and to what extent vitamin D-related gene variants can influence MS risk.
Collapse
Affiliation(s)
- Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Via del Vespro, 129, CAP 90127, Palermo, Sicily, Italy.
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy.
| |
Collapse
|
8
|
Moghbeli M. Genetic and Molecular Biology of Multiple Sclerosis Among Iranian Patients: An Overview. Cell Mol Neurobiol 2020; 40:65-85. [PMID: 31482432 DOI: 10.1007/s10571-019-00731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is one if the common types of autoimmune disorders in developed countries. Various environmental and genetic factors are associated with initiation and progression of MS. It is believed that the life style changes can be one of the main environmental risk factors. The environmental factors are widely studied and reported, whereas minority of reports have considered the role of genetic factors in biology of MS. Although Iran is a low-risk country in the case of MS prevalence, it has been shown that there was a dramatically rising trend of MS prevalence among Iranian population during recent decades. Therefore, it is required to assess the probable MS risk factors in Iran. In the present study, we summarized all of the reported genes until now which have been associated with MS susceptibility among Iranian patients. To clarify the probable molecular biology of MS progression, we categorized these reported genes based on their cellular functions. This review paves the way of introducing a specific population-based diagnostic panel of genetic markers among the Iranian population for the first time in the world.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Scazzone C, Agnello L, Lo Sasso B, Ciaccio AM, Giglio RV, Bivona G, Ciaccio M. Vitamin D and Multiple Sclerosis: An Open-Ended Story. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory autoimmune disease of the Central Nervous System (CNS). Genetic, epigenetic and environmental factors interact together, contributing to the complex pathogenesis of the disease. In the last decades, the role of hypovitaminosis D on MS risk was hypothesised. Several factors drive the regulation of vitamin D status, including genetics. The current review summarises the literature evidence on the association between vitamin D and MS, with a focus on the genetic polymorphisms in vitamin D-related genes. The variants of the genes codifying Vitamin D Receptor (VDR), Vitamin D Binding Protein (VDBP) and CYP enzymes have been investigated, but the findings are controversial. Only a few studies have addressed the role of DHCR7 polymorphisms in MS risk.
Collapse
|
10
|
Imani D, Razi B, Motallebnezhad M, Rezaei R. Association between vitamin D receptor (VDR) polymorphisms and the risk of multiple sclerosis (MS): an updated meta-analysis. BMC Neurol 2019; 19:339. [PMID: 31878897 PMCID: PMC6933912 DOI: 10.1186/s12883-019-1577-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
Background The association between the Vitamin D Receptor (VDR) gene polymorphism and the risk of Multiple sclerosis (MS) has been evaluated in several researches. However, the findings were inconsistent and inconclusive. Therefore, we set out a meta-analysis of all eligible published case-control studies to obtain an exact evaluation of the association between VDR gene polymorphisms and MS. Method All relevant studies reporting the association between the VDR gene FokI (rs2228570), or/and TaqI (rs731236) or/and BsmI (rs1544410) or/and ApaI (rs7975232) polymorphisms and susceptibility to MS published up to May, 2019 were identified by comprehensive systematic search in the electronic database of web of science, Scopus, and PubMed. After that, the strength of association between VDR gene polymorphisms and susceptibility to MS was evaluated by odds ratio (OR) and 95% confidence interval (CI). Results A total of 30 case–control studies were included in the meta-analysis. The overall results suggested a significant association between TaqI polymorphism and MS risk under heterozygote genetic model (OR = 1.27, 95%CI = 1.01–1.59, random effect). Moreover, the pooled results of subgroup analysis declined presence of significant association under all defined genetic model. In subgroup analysis, BsmI polymorphisms was associated with increased risk of MS under recessive model in Asian populations. On the other hand, ApaI polymorphism was associated with decreased risk of MS under recessive and aa vs. AA model in Asian populations. Conclusion This meta-analysis suggested a significant association between TaqI polymorphism and MS susceptibility. Furthermore, BsmI polymorphism was associated with increased risk of MS in Asian populations. In contrast, ApaI polymorphism was associated with decreased risk of MS in Asian populations. Future large-scale studies on gene–environment and gene–gene interactions are required to estimate risk factors and assist early diagnosis of patients at high risk for MS.
Collapse
Affiliation(s)
- Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences(TUMS), Tehran, Iran
| | - Bahman Razi
- Department of Hematology and Blood Banking, School of Medicine, Tarbiat modares university (TMU), Tehran, Iran
| | - Morteza Motallebnezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 14194, Iran.
| |
Collapse
|
11
|
Hassab AH, Deif AH, Elneely DA, Tawadros IM, Fayad AI. Protective association of VDR gene polymorphisms and haplotypes with multiple sclerosis patients in Egyptian population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0009-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Zhang D, Wang L, Zhang R, Li S. Association of Vitamin D Receptor Gene Polymorphisms and the Risk of Multiple Sclerosis: A Meta Analysis. Arch Med Res 2019; 50:350-361. [PMID: 31677540 DOI: 10.1016/j.arcmed.2019.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previous studies have reported vitamin D receptor (VDR) polymorphisms in multiple sclerosis (MS); however, the results remain contradictory. This study aimed to investigate the association between VDR polymorphisms and the risk of MS. METHODS PubMed and Embase databases were searched to obtain eligible studies. Data were calculated by odds ratios (OR) with 95% confidence intervals (CI). RESULTS Twenty seven case-control studies with 4879 MS patients and 5402 controls were included. There was no significant association between ApaI polymorphisms and MS in the overall population. In Asians, no association was found between ApaI polymorphism and MS in the recessive, dominant, Codominant (OR1), Codominant (OR2), Codominant (OR3) models and allele contrast. Similar results were obtained between BsmI polymorphisms and MS. The association between TaqI polymorphism and MS showed significance in the recessive, homozygous, codominant (OR3) models in the overall population and Caucasians. The dominant model showed no association of Taq I polymorphism with MS risk in HLA-DRB1*15-positive and HLA-DRB1*15-negative groups. FokI polymorphism with MS was found in Codominant (OR3) model in the overall population. In Asians, FokI polymorphism showed association with MS in recessive, dominant, Codominant (OR1), Codominant (OR3) models and allele contrast. Subgroup analysis of sex showed no associations between TaqI or FokI polymorphism and MS risk in males or females in all models or allele contrast. CONCLUSIONS The VDR TaqI polymorphisms showed association with MS risk, especially in Caucasians. In Asians, ApaI and FokI polymorphisms correlated with MS risk, while BsmI polymorphisms showed no association with MS.
Collapse
Affiliation(s)
- Dongming Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Limei Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. Autoimmun Rev 2019; 18:102350. [PMID: 31323357 DOI: 10.1016/j.autrev.2019.102350] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 12/24/2022]
Abstract
Vitamin D plays a key role in in calcium homeostasis and, thus, provides an important support in bone growth by aiding in the mineralization of the collagen matrix. However, vitamin D performs various immunomodulatory, anti-inflammatory, antioxidant and anti-fibrotic actions. Autoimmune diseases result from an aberrant activation of the immune system, whereby the immune response is directed against harmless self-antigens. Does vitamin D play a role in the pathophysiology of autoimmune diseases? And, if so, what is its role? In the last decade, researchers' interest in vitamin D and its correlations with autoimmune diseases has considerably increased. We conducted a literature review, covering the period January 1, 2009 through March 30, 2019, in PubMed. We analyzed more than 130 studies in order to find a correlation between vitamin D levels and its effect upon several autoimmune diseases. The analysis demonstrated an inverse association between vitamin D and the development of several autoimmune diseases, such as SLE, thyrotoxicosis, type 1 DM, MS, iridocyclitis, Crohn's disease, ulcerative colitis, psoriasis vulgaris, seropositive RA, polymyalgia rheumatica. International multicenter study could allow us to confirm the data already present in the literature in the single clinical studies and to evaluate when to effectively supplement vitamin D in patients who do not take corticosteroids.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino,Genoa, Italy.
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino,Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino,Genoa, Italy
| | - Matteo Borro
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino,Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino,Genoa, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
14
|
Kamisli O, Acar C, Sozen M, Tecellioglu M, Yücel FE, Vaizoglu D, Özcan C. The association between vitamin D receptor polymorphisms and multiple sclerosis in a Turkish population. Mult Scler Relat Disord 2018; 20:78-81. [PMID: 29331875 DOI: 10.1016/j.msard.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system (CNS). Genetic and environmental factors are important in disease development. Many studies have investigated the relationship between MS and VDR polymorphisms. VDR gene polymorphism has not been previously studied in Turkish MS patients. We aimed to investigate the relationship between MS and VDR genotypes Taq I, Apa I and Fok I polymorphisms in a Turkish population. METHODS 167 MS patients and 146 healthy control subjects were included in the present study. MS and the VDR TaqI (rs731236), ApaI (rs7975232), and FokI (rs2228570) polymorphisms were investigated. RESULTS The study enrolled 167 patients (121 females, 46 males) with MS and 146 healthy individuals (88 females, 58 males). The frequency of only the Fok I polymorphism differed significantly between the two groups (p = 0.002). The TaqI (rs731236) and ApaI (rs7975232) genotype distributions were not significantly different between MS patients and healthy controls (p = 0.626 and p = 0.990, respectively). Also there were no significant gender difference between patients and controls for Taq I and Apa I. CONCLUSION In conclusion, we found a significant association between MS and the FokI polymorphism in our region of Turkey. However, the results may be different in other populations. More epidemiological and genetic studies are needed to explain the association between genetic factors and MS.
Collapse
Affiliation(s)
- Ozden Kamisli
- Inonu University, School of Medicine, Department of Neurology, Malatya, Turkey.
| | - Ceren Acar
- Inonu University, Department of Molecular Biology and Genetics, Malatya, Turkey.
| | - Mert Sozen
- Inonu University, Department of Molecular Biology and Genetics, Malatya, Turkey.
| | - Mehmet Tecellioglu
- Inonu University, School of Medicine, Department of Neurology, Malatya, Turkey.
| | - Fatma Ebru Yücel
- Inonu University, School of Medicine, Department of Neurology, Malatya, Turkey.
| | - Dilara Vaizoglu
- Inonu University, Department of Molecular Biology and Genetics, Malatya, Turkey.
| | - Cemal Özcan
- Inonu University, School of Medicine, Department of Neurology, Malatya, Turkey.
| |
Collapse
|