1
|
Bedeschi M, Agrawal A, Adinolfi E, Tesei A, Vouret-Craviari V. A step-by-step protocol based on data mining to explore purinergic signaling in glioblastoma. Purinergic Signal 2025:10.1007/s11302-025-10080-z. [PMID: 40072681 DOI: 10.1007/s11302-025-10080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Over the past few years, transcriptomics has emerged as a pillar for modern scientific research, enabling the comprehensive profiling of gene expression. The availability of large-scale public datasets, such as NCBI Gene Expression Omnibus, International Cancer Genome Consortium, and The Cancer Genome Atlas, has significantly boosted many scientific discoveries. However, to analyze and interpret these vast datasets, sophisticated bioinformatic tools are often necessary. Phantasus is a user-friendly web application designed to streamline gene expression analysis. By integrating data loading, normalization, filtering, enrichment pathways analysis, and principal component analysis, Phantasus enables researchers to promptly investigate and evaluate complex gene expression patterns. This tool simplifies the identification of differentially expressed genes and the discovery of novel biological insights. Here, we demonstrate how Phantasus can be utilized for gene expression analysis in glioblastoma (GBM), the most common primary malignant brain tumour in adults. Specifically, we focus on the role of purinergic signaling, with particular emphasis on the P2RX7 mRNA coding for the P2X7 receptor (P2RX7). To illustrate our proposal, we analyzed the expression of genes related to purinergic signaling in GBM patients stratified by high and low levels of P2RX7 expression. By harnessing Phantasus, researchers can further explore and navigate the nuances of gene regulation and its impact on human health and diseases.
Collapse
Affiliation(s)
- Martina Bedeschi
- Biosciences Laboratory, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) Dino Amadori, 47014, Meldola, Italy
| | - Ankita Agrawal
- Translational Research Centre, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Elena Adinolfi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) Dino Amadori, 47014, Meldola, Italy.
| | | |
Collapse
|
2
|
Leite-Aguiar R, Cristina-Rodrigues F, Ciarlini-Magalhães R, Dantas DP, Alves VS, Gavino-Leopoldino D, Neris RLS, Schmitz F, Silveira JS, Kurtenbach E, Wyse ATS, Clarke JR, Figueiredo CP, Assunção-Miranda I, Pimentel-Coelho PM, Coutinho-Silva R, Savio LEB. ATP-P2X7 signaling mediates brain pathology while contributing to viral control in perinatal Zika virus infection. Brain Behav Immun 2024; 118:318-333. [PMID: 38460804 DOI: 10.1016/j.bbi.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-β, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.
Collapse
Affiliation(s)
- Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Cristina-Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Ciarlini-Magalhães
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danillo Pereira Dantas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Gavino-Leopoldino
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rômulo Leão Silva Neris
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Schmitz
- Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Rosauro Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Tewari M, Michalski S, Egan TM. Modulation of Microglial Function by ATP-Gated P2X7 Receptors: Studies in Rat, Mice and Human. Cells 2024; 13:161. [PMID: 38247852 PMCID: PMC10814008 DOI: 10.3390/cells13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
P2X receptors are a family of seven ATP-gated ion channels that trigger physiological and pathophysiological responses in a variety of cells. Five of the family members are sensitive to low concentrations of extracellular ATP, while the P2X6 receptor has an unknown affinity. The last subtype, the P2X7 receptor, is unique in requiring millimolar concentrations to fully activate in humans. This low sensitivity imparts the agonist with the ability to act as a damage-associated molecular pattern that triggers the innate immune response in response to the elevated levels of extracellular ATP that accompany inflammation and tissue damage. In this review, we focus on microglia because they are the primary immune cells of the central nervous system, and they activate in response to ATP or its synthetic analog, BzATP. We start by introducing purinergic receptors and then briefly consider the roles that microglia play in neurodevelopment and disease by referencing both original works and relevant reviews. Next, we move to the role of extracellular ATP and P2X receptors in initiating and/or modulating innate immunity in the central nervous system. While most of the data that we review involve work on mice and rats, we highlight human studies of P2X7R whenever possible.
Collapse
|
4
|
Adinolfi E, De Marchi E, Grignolo M, Szymczak B, Pegoraro A. The P2X7 Receptor in Oncogenesis and Metastatic Dissemination: New Insights on Vesicular Release and Adenosinergic Crosstalk. Int J Mol Sci 2023; 24:13906. [PMID: 37762206 PMCID: PMC10531279 DOI: 10.3390/ijms241813906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The tumor niche is an environment rich in extracellular ATP (eATP) where purinergic receptors have essential roles in different cell subtypes, including cancer, immune, and stromal cells. Here, we give an overview of recent discoveries regarding the role of probably the best-characterized purinergic receptor in the tumor microenvironment: P2X7. We cover the activities of the P2X7 receptor and its human splice variants in solid and liquid cancer proliferation, dissemination, and crosstalk with immune and endothelial cells. Particular attention is paid to the P2X7-dependent release of microvesicles and exosomes, their content, including ATP and miRNAs, and, in general, P2X7-activated mechanisms favoring metastatic spread and niche conditioning. Moreover, the emerging role of P2X7 in influencing the adenosinergic axis, formed by the ectonucleotidases CD39 and CD73 and the adenosine receptor A2A in cancer, is analyzed. Finally, we cover how antitumor therapy responses can be influenced by or can change P2X7 expression and function. This converging evidence suggests that P2X7 is an attractive therapeutic target for oncological conditions.
Collapse
Affiliation(s)
- Elena Adinolfi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Elena De Marchi
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Marianna Grignolo
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| | - Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Anna Pegoraro
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.D.M.); (M.G.); (A.P.)
| |
Collapse
|
5
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
6
|
Szymczak B, Czarnecka J, Czach S, Nowak W, Roszek K. Purinergic approach to effective glioma treatment with temozolomide reveals enhanced anti-cancer effects mediated by P2X7 receptor. Cell Signal 2023; 106:110641. [PMID: 36858191 DOI: 10.1016/j.cellsig.2023.110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The purinergic signaling pathway is the oldest evolutionary transmitter system that regulates a wide array of physiological and pathophysiological processes in central nervous system. However, the question of how the purinergic compounds interact with administrated drugs is rarely addressed. We aimed to clarify the interplay between purinergic signaling and chemotherapeutic drug temozolomide (TMZ) in human glioma cell line. We applied an initial retinoic acid-induced differentiation of A172 glioma cells and tested the P2X7 receptor expression in undifferentiated and differentiated gliomas. We compared the P2X7 receptor agonists/antagonists influence and their co-action with TMZ in both cell types through assessment of cell proliferation, viability and migrative properties. Molecular docking allowed to indicate the potential binding site for TMZ in the structure of hP2X7 receptor. Differentiated cells turned out to be more susceptible to ATP and TMZ alone but also to the concerted action of TMZ and ATP. Enhanced effects triggered by ATP and TMZ treatment include the decreased by 70% viability, and reduced migration ability of differentiated A172 glioma cells. Noteworthy, these results can be achieved already at low non-toxic ATP concentration and at reduced to 125 μM effective concentration of TMZ. Therefore, ATP molecules must be present and maintained at appropriate concentration in glioma cells microenvironment to achieve their co-action with TMZ and enhanced anti-cancer activity. All that, in turn, could shorten the therapy, increase its efficacy and limit the side effects for the patient. Our purinergic approach creates a promising perspective for developing novel combined oncological therapies.
Collapse
Affiliation(s)
- Bartosz Szymczak
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Joanna Czarnecka
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Wiesław Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Torun, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland.
| |
Collapse
|
7
|
Hamoud AR, Bach K, Kakrecha O, Henkel N, Wu X, McCullumsmith RE, O’Donovan SM. Adenosine, Schizophrenia and Cancer: Does the Purinergic System Offer a Pathway to Treatment? Int J Mol Sci 2022; 23:ijms231911835. [PMID: 36233136 PMCID: PMC9570456 DOI: 10.3390/ijms231911835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
For over a century, a complex relationship between schizophrenia diagnosis and development of many cancers has been observed. Findings from epidemiological studies are mixed, with reports of increased, reduced, or no difference in cancer incidence in schizophrenia patients. However, as risk factors for cancer, including elevated smoking rates and substance abuse, are commonly associated with this patient population, it is surprising that cancer incidence is not higher. Various factors may account for the proposed reduction in cancer incidence rates including pathophysiological changes associated with disease. Perturbations of the adenosine system are hypothesized to contribute to the neurobiology of schizophrenia. Conversely, hyperfunction of the adenosine system is found in the tumor microenvironment in cancer and targeting the adenosine system therapeutically is a promising area of research in this disease. We outline the current biochemical and pharmacological evidence for hypofunction of the adenosine system in schizophrenia, and the role of increased adenosine metabolism in the tumor microenvironment. In the context of the relatively limited literature on this patient population, we discuss whether hypofunction of this system in schizophrenia, may counteract the immunosuppressive role of adenosine in the tumor microenvironment. We also highlight the importance of studies examining the adenosine system in this subset of patients for the potential insight they may offer into these complex disorders.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Karen Bach
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ojal Kakrecha
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Nicholas Henkel
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
8
|
Zhang WJ, Hu DX, Lin SJ, Fang XQ, Ye ZF. Contribution of P2X purinergic receptor in cerebral ischemia injury. Brain Res Bull 2022; 190:42-49. [PMID: 36113681 DOI: 10.1016/j.brainresbull.2022.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
The development of cerebral ischemia involves brain damage and abnormal changes in brain function, which can cause neurosensory and motor dysfunction, and bring serious consequences to patients. P2X purinergic receptors are expressed in nerve cells and immune cells, and are mainly expressed in microglia. The P2X4 and P2X7 receptors in the P2X purinergic receptors play a significant role in regulating the activity of microglia. Moreover, ATP-P2X purine information transmission is involved in the progression of neurological diseases, including the release of pro-inflammatory factors, driving factors and cytokines after cerebral ischemia injury, inducing inflammation, and aggravating cerebral ischemia injury. P2X receptors activation can mediate the information exchange between microglia and neurons, induce neuronal apoptosis, and aggravate neurological dysfunction after cerebral ischemia. However, inhibiting the activation of P2X receptors, reducing their expression, inhibiting the activation of microglia, and has the effect of protecting nerve function. In this paper, we discussed the relationship between P2X receptors and nervous system function and the role of microglia activation inducing cerebral ischemia injury. Additionally, we explored the potential role of P2X receptors in the progression of cerebral ischemic injury and their potential pharmacological targets for the treatment of cerebral ischemic injury.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xiao-Qun Fang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zhen-Feng Ye
- Department of Urology, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
9
|
Polysaccharides Extracted from Angelica sinensis (Oliv.) Diels Relieve the Malignant Characteristics of Glioma Cells through Regulating the MiR-373-3p-Mediated TGF- β/Smad4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7469774. [PMID: 35855826 PMCID: PMC9288290 DOI: 10.1155/2022/7469774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
Objectives Angelica sinensis polysaccharide (ASP) is a traditional herbal medicine accompanied by antitumor potential. This study aims to explore the therapeutic potential of ASP on glioma, as well as the underlying mechanisms involving microRNA-373-3p (miR-373-3p) and the TGF-β/Smad4 signaling pathway. Methods U251 cells (a human glioma cell line) were treated with different concentrations of ASP. miR-373-3p was silenced in U251 cells by the transfection of the miR-373-3p inhibitor. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Cell migration and invasion were detected by wound healing and transwell assays, respectively. The miR-373-3p expression was measured by RT-qPCR. The protein expressions of TGF-β and Smad4 were evaluated by both western blotting and immunofluorescence. Results ASP inhibited the viability, migration, and invasion, and enhanced the apoptosis of U251 cells in a dose-dependent manner. ASP increased miR-373-3p expression and decreased TGF-β and Smad4 expressions in U251 cells. Silencing of miR-373-3p weakened the effects of ASP on inhibiting cell viability, migration, and invasion, as well as promoting cell apoptosis. In addition, deleting miR-373-3p weakened the inhibiting effects of ASP on the TGF-β/Smad4 pathway in U251 cells. Conclusions ASP suppresses the malignant progression of glioma via regulating the miR-373-3p-mediated TGF-β/Smad4 pathway.
Collapse
|
10
|
Chim ST, Sanfilippo P, O'Brien TJ, Drummond KJ, Monif M. Pretreatment neutrophil-to-lymphocyte/monocyte-to-lymphocyte ratio as prognostic biomarkers in glioma patients. J Neuroimmunol 2021; 361:577754. [PMID: 34700046 DOI: 10.1016/j.jneuroim.2021.577754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/25/2021] [Accepted: 10/16/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate the ability for pre-treatment NLR and MLR to predict overall survival (OS) and modified Rankin Scale (mRS) and to explore their relationship with clinicopathological parameters. METHODS Retrospective analysis of pretreatment NLR and MLR from 64 glioma patients. RESULTS Higher pretreatment NLR (>4.7) predicted higher mean admission mRS (p < 0.001) and 6-month mRS (p = 0.02). Higher pretreatment MLR (>0.35) was a risk factor for poorer OS in glioma patients (p = 0.024). Higher pretreatment NLR was significantly associated with larger tumor diameter (p = 0.02). CONCLUSION NLR and MLR can serve as prognostic markers to predict functional outcomes and OS in glioma patients.
Collapse
Affiliation(s)
- Sher Ting Chim
- Faculty of Medicine, Nursing and Health Sciences, Monash University, 27 Rainforest Walk, Clayton, VIC 3800, Australia; Melbourne Brain Centre, Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3052, Australia; Department of Neurology, Royal Melbourne Hospital, Grattan St, Parkville, VIC 3050, Australia.
| | - Paul Sanfilippo
- Department of Neuroscience, Monash University, Melbourne, VIC 3000, Australia.
| | - Terence J O'Brien
- Faculty of Medicine, Nursing and Health Sciences, Monash University, 27 Rainforest Walk, Clayton, VIC 3800, Australia; Melbourne Brain Centre, Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3052, Australia; Department of Neurology, Alfred Health, Prahran, Melbourne, VIC 3000, Australia; Department of Neuroscience, Monash University, Melbourne, VIC 3000, Australia.
| | - Kate J Drummond
- Department of Neurosurgery, The University of Melbourne, Parkville, VIC 3050, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC 3050, Australia.
| | - Mastura Monif
- Faculty of Medicine, Nursing and Health Sciences, Monash University, 27 Rainforest Walk, Clayton, VIC 3800, Australia; Melbourne Brain Centre, Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3052, Australia; Department of Neurology, Royal Melbourne Hospital, Grattan St, Parkville, VIC 3050, Australia; Department of Neurology, Alfred Health, Prahran, Melbourne, VIC 3000, Australia; Department of Neuroscience, Monash University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
11
|
Asemi Z, Behnam M, Pourattar MA, Mirzaei H, Razavi ZS, Tamtaji OR. Therapeutic Potential of Berberine in the Treatment of Glioma: Insights into Its Regulatory Mechanisms. Cell Mol Neurobiol 2021; 41:1195-1201. [PMID: 32557203 PMCID: PMC11448641 DOI: 10.1007/s10571-020-00903-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/10/2020] [Indexed: 01/07/2023]
Abstract
Glioma is known as one of the most common primary intracranial tumors accounting for four-fifths of malignant brain tumors. There are several biological pathways that play a synergistic, pathophysiological role in glioma, including apoptosis, autophagy, oxidative stress, and cell cycle arrest. According to previous rese arches, the drugs used in the treatment of glioma have been associated with significant limitations. Therefore, improved and/or new therapeutic platforms are required. In this regard, multiple flavonoids and alkaloids have been extensively studied in the treatment of glioma. Berberine is a protoberberine alkaloid with wide range of pharmacological activities, applicable to various pathological conditions. Few studies have reported beneficial roles of berberine in glioma. Berberine exerts its pharmacological functions in glioma by controlling different molecular and cellular pathways. We reviewed the existing knowledge supporting the use of berberine in the treatment of glioma and its effects on molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | | | - Mohammad Ali Pourattar
- Department of Radiobiology, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
12
|
The Multifunctional Role of EMP3 in the Regulation of Membrane Receptors Associated with IDH-Wild-Type Glioblastoma. Int J Mol Sci 2021; 22:ijms22105261. [PMID: 34067658 PMCID: PMC8156612 DOI: 10.3390/ijms22105261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
Epithelial membrane protein 3 (EMP3) is a tetraspan membrane protein overexpressed in isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma (GBM). Several studies reported high EMP3 levels as a poor prognostic factor in GBM patients. Experimental findings based on glioma and non-glioma models have demonstrated the role of EMP3 in the regulation of several membrane proteins known to drive IDH-wt GBM. In this review, we summarize what is currently known about EMP3 biology. We discuss the regulatory effects that EMP3 exerts on a variety of oncogenic receptors and discuss how these mechanisms may relate to IDH-wt GBM. Lastly, we enumerate the open questions towards EMP3 function in IDH-wt GBM.
Collapse
|
13
|
Di Virgilio F. P2X7 is a cytotoxic receptor….maybe not: implications for cancer. Purinergic Signal 2021; 17:55-61. [PMID: 33011962 PMCID: PMC7955003 DOI: 10.1007/s11302-020-09735-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is rich in extracellular ATP. This nucleotide affects both cancer and infiltrating immune cell responses by acting at P2 receptors, chiefly P2X7. ATP is then degraded to generate adenosine, a very powerful immunosuppressant. The purinergic hypothesis put forward by Geoff Burnstock prompted innovative investigation in this field and provided the intellectual framework to interpret a myriad of experimental findings. This is a short appraisal of how Geoff's inspiration influenced cancer studies and my own investigation highlighting the key role of the P2X7 receptor.
Collapse
|
14
|
Scheffel TB, Grave N, Vargas P, Diz FM, Rockenbach L, Morrone FB. Immunosuppression in Gliomas via PD-1/PD-L1 Axis and Adenosine Pathway. Front Oncol 2021; 10:617385. [PMID: 33659213 PMCID: PMC7919594 DOI: 10.3389/fonc.2020.617385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is the most malignant and lethal subtype of glioma. Despite progress in therapeutic approaches, issues with the tumor immune landscape persist. Multiple immunosuppression pathways coexist in the tumor microenvironment, which can determine tumor progression and therapy outcomes. Research in immune checkpoints, such as the PD-1/PD-L1 axis, has renewed the interest in immune-based cancer therapies due to their ability to prevent immunosuppression against tumors. However, PD-1/PD-L1 blockage is not completely effective, as some patients remain unresponsive to such treatment. The production of adenosine is a major obstacle for the efficacy of immune therapies and is a key source of innate or adaptive resistance. In general, adenosine promotes the pro-tumor immune response, dictates the profile of suppressive immune cells, modulates the release of anti-inflammatory cytokines, and induces the expression of alternative immune checkpoint molecules, such as PD-1, thus maintaining a loop of immunosuppression. In this context, this review aims to depict the complexity of the immunosuppression in glioma microenvironment. We primarily consider the PD-1/PD-L1 axis and adenosine pathway, which may be critical points of resistance and potential targets for tumor treatment strategies.
Collapse
Affiliation(s)
- Thamiris Becker Scheffel
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Nathália Grave
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Vargas
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fernando Mendonça Diz
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Liliana Rockenbach
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
15
|
Tan YQ, Li YT, Yan TF, Xu Y, Liu BH, Yang JA, Yang X, Chen QX, Zhang HB. Six Immune Associated Genes Construct Prognostic Model Evaluate Low-Grade Glioma. Front Immunol 2020; 11:606164. [PMID: 33408717 PMCID: PMC7779629 DOI: 10.3389/fimmu.2020.606164] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background The immunotherapy of Glioma has always been a research hotspot. Although tumor associated microglia/macrophages (TAMs) proves to be important in glioma progression and drug resistance, our knowledge about how TAMs influence glioma remains unclear. The relationship between glioma and TAMs still needs further study. Methods We collected the data of TAMs in glioma from NCBI Gene Expression Omnibus (GEO) that included 20 glioma samples and 15 control samples from four datasets. Six genes were screened from the Differential Expression Gene through Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction (PPI) network and single-cell sequencing analysis. A risk score was then constructed based on the six genes and patients' overall survival rates of 669 patients from The Cancer Genome Atlas (TCGA). The efficacy of the risk score in prognosis and prediction was verified in Chinese Glioma Genome Atlas (CGGA). Results Six genes, including CD163, FPR3, LPAR5, P2ry12, PLAUR, SIGLEC1, that participate in signal transduction and plasma membrane were selected. Half of them, like CD163, FPR3, SIGLEC1, were mainly expression in M2 macrophages. FPR3 and SIGLEC1 were high expression genes in glioma associated with grades and IDH status. The overall survival rates of the high risk score group was significantly lower than that of the low risk score group, especially in LGG. Conclusion Joint usage of the 6 candidate genes may be an effective method to diagnose and evaluate the prognosis of glioma, especially in Low-grade glioma (LGG).
Collapse
Affiliation(s)
- Yin Qiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun Tao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Teng Feng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bao Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Bo Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
16
|
Zhang WJ, Hu CG, Luo HL, Zhu ZM. Activation of P2×7 Receptor Promotes the Invasion and Migration of Colon Cancer Cells via the STAT3 Signaling. Front Cell Dev Biol 2020; 8:586555. [PMID: 33330466 PMCID: PMC7732635 DOI: 10.3389/fcell.2020.586555] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The pathological mechanism of colon cancer is very complicated. Therefore, exploring the molecular basis of the pathogenesis of colon cancer and finding a new therapeutic target has become an urgent problem to be solved in the treatment of colon cancer. ATP plays an important role in regulating the progression of tumor cells. P2 × 7 belongs to ATP ion channel receptor, which is involved in the progression of tumors. In this study, we explored the effect and molecular mechanism of ATP-mediated P2 × 7 receptor on the migration and metastasis of colon cancer cells. The results showed that ATP and BzATP significantly increased the inward current and intracellular calcium concentration of LOVO and SW480 cells, while the use of antagonists (A438079 and AZD9056) could reverse the above phenomenon. We found that ATP promoted the migration and invasion of LOVO and SW480 cells and is dose-dependent on ATP concentration (100–300 μM). Similarly, BzATP (10, 50, and 100 μM) also significantly promoted the migration and invasion of colon cancer cells in a concentration-dependent manner. While P2 × 7 receptor antagonists [A438079 (10 μM), AZD9056 (10 μM)] or P2 × 7 siRNA could significantly inhibit ATP-induced colon cancer cell migration and invasion. Moreover, in vivo experiments showed that ATP-induced activation of P2 × 7 receptor promoted the growth of tumors. Furthermore, P2 × 7 receptor activation down-regulated E-cadherin protein expression and up-regulated MMP-2 mRNA and concentration levels. Knocking down the expression of P2 × 7 receptor could significantly inhibit the increase in the expression of N-cadherin, Vimentin, Zeb1, and Snail induced by ATP. In addition, ATP time-dependently induced the activation of STAT3 via the P2 × 7 receptor, and the STAT3 pathway was required for the ATP-mediated invasion and migration. Our conclusion is that ATP-induced P2 × 7 receptor activation promotes the migration and invasion of colon cancer cells, possibly via the activation of STAT3 pathway. Therefore, the P2 × 7 receptor may be a potential target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ce-Gui Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer. Ther Deliv 2020; 11:557-571. [PMID: 32867624 DOI: 10.4155/tde-2020-0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This work focused on the development of transferrin-conjugated theranostic liposomes consisting of docetaxel (DXL) and upconversion nanoparticles for the diagnosis and treatment of gliomas. Materials & methods: Upconversion nanoparticles and docetaxel-loaded theranostic liposomes were prepared by a solvent injection method. Formulations were analyzed for physicochemical properties, encapsulation efficiency, drug release, elemental analysis, cytotoxicity and fluorescence. Results: The particle size was around 200 nm with spherical morphology and an encapsulation efficiency of up to 75.93%, was achieved for liposomes with an in vitro drug release of 71.10%. The IC50 values demonstrated enhanced cytotoxicity on C6 glioma cells with targeted liposomes in comparison with nontargeted liposomes. Conclusion: Prepared theranostic liposomes may be promising for clinical validation after an in vitro and in vivo evaluation on cell lines and animals, respectively.
Collapse
|
18
|
Bergamin LS. P2X7 receptors and glioma cells. Purinergic Signal 2020; 16:253-254. [PMID: 32870442 DOI: 10.1007/s11302-020-09725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Leticia Scussel Bergamin
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Via Fossato di Mortara, 74, 44121, Ferrara, Italy.
| |
Collapse
|
19
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
20
|
Kan LK, Drummond KJ, Hunn M, Williams DA, O’Brien TJ, Monif M. A Simple and Reliable Protocol for the Preparation and Culturing of Fresh Surgically Resected Human Glioblastoma Tissue. Methods Protoc 2020; 3:mps3010011. [PMID: 31979088 PMCID: PMC7189671 DOI: 10.3390/mps3010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is a heterogeneous glial cell malignancy with extremely high morbidity and mortality. Current treatment is limited and provide minimal therapeutic efficacy. Previous studies were reliant on cell lines that do not accurately reflect the heterogeneity of the glioma microenvironment. Developing reliable models of human glioblastoma is therefore essential. Direct culture of human brain tumours is often difficult and there is a limited number of protocols available. Hence, we have developed an effective method for the primary culture of human glioblastoma samples obtained during surgical resection. Culturing tumour tissue direct from human brain is advantageous in that cultures (1) more closely resemble true human disease, relative to the use of cell lines; (2) comprise a range of cellular components present in the natural tumour microenvironment; and (3) are free of added antibodies and reagents. Additionally, primary glioblastoma cultures are valuable in studies examining the effects of anti-cancer pharmaceuticals and therapeutic agents, and can be further used in live cell imaging, immunocytochemistry, flow cytometry and immunoassay experiments. Via this protocol, cells are maintained in supplemented medium at 37 °C (5% CO2) and are expected to achieve sufficient confluency within 7 days of initial culture.
Collapse
Affiliation(s)
- Liyen Katrina Kan
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; (L.K.K.); (T.J.O.)
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Katharine J Drummond
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Martin Hunn
- Department of Neurosurgery, Alfred Health, Melbourne, VIC 3004, Australia;
| | - David A Williams
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Terence J O’Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; (L.K.K.); (T.J.O.)
| | - Mastura Monif
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia; (L.K.K.); (T.J.O.)
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Surgery, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence:
| |
Collapse
|
21
|
Role of the P2X7 receptor in in vitro and in vivo glioma tumor growth. Oncotarget 2019; 10:4840-4856. [PMID: 31448051 PMCID: PMC6690673 DOI: 10.18632/oncotarget.27106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Human glioblastoma cells are strikingly refractory to ATP-stimulated, P2X7 receptor (P2X7R)-mediated cytotoxicity. To elucidate the mechanistic basis of this feature, we investigated P2X7R-dependent responses in wild type and P2X7R-transfected U138 cells. Mouse GL261 glioma cells were used as an additional control. Here, we report that wild type U138 glioma cells expressed the P2X7R to very low level. Contrary to human U138 cells, mouse GL261 cells showed strong P2X7R expression and P2X7R-dependent responses. Transfection of wild type P2RX7 into U138 cells fully restored P2X7R-dependent responses. P2RX7 transfection conferred a negligible in vitro growth advantage to U138 cells, while strongly accelerated in vivo growth. In silico analysis showed that the P2RX7 gene is seldom mutated in specimens from glioblastoma multiforme (GBM) patients. These observations suggest that the P2X7R might be an important receptor promoting GBM growth.
Collapse
|