1
|
Hu R, Li M, Chen S, Wang M, Tao X, Zhu Y, Yan H, Liu Y. Sniffer restricts arboviral brain infections by regulating ROS levels and protecting blood-brain barrier integrity in Drosophila and mosquitoes. PLoS Pathog 2024; 20:e1012797. [PMID: 39680616 DOI: 10.1371/journal.ppat.1012797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Arthropod-borne viruses (arboviruses) are transmitted to humans by arthropod vectors and pose a serious threat to global public health. Neurotropic arboviruses including Sindbis virus (SINV) persistently infect the central nervous system (CNS) of vector insects without causing notable pathological changes or affecting their behavior or lifespan. However, the mechanisms by which vector insects evade these viral infections in the brains are poorly understood. In this study, we found that loss of the carbonyl reductase Sniffer (Sni) led to a significant increase in SINV infection in the Drosophila brain. Sni regulates reactive oxygen species (ROS) levels, and its depletion leads to elevated ROS, which in turn disrupts the septate junctions (SJs) between subperineurial glia (SPG) cells, compromising the integrity and barrier function of the blood-brain barrier (BBB). Genetic and pharmacological reduction of ROS restored BBB integrity and reduced viral load in the brains of Sni-depleted flies. Additionally, we identified Sni homologs and revealed that the antiviral function of Sni is highly conserved in mosquitoes, where it regulates ROS and protects BBB integrity. Our results revealed an evolutionarily conserved antiviral mechanism in which Sni acts as an antioxidant that protects BBB integrity and restricts viral infection in the vector insect brain.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengzhu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shulin Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinjun Tao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yihan Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Rai P, Bergmann A. Unraveling the intricate link between cell death and neuroinflammation using Drosophila as a model. Front Cell Dev Biol 2024; 12:1479864. [PMID: 39411483 PMCID: PMC11474694 DOI: 10.3389/fcell.2024.1479864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Protein aggregation is a common pathological occurrence in neurodegenerative diseases. This often leads to neuroinflammation, which exacerbates the aggregation and progression of diseases like Parkinson's and Alzheimer's. Here, we focus on immune responses and neurotoxicity in a Parkinson's disease model in Drosophila. Mutations in the SNCA gene that encodes the alpha (α)-Synuclein protein have been linked to familial Parkinson's disease, disrupting autophagy regulation in neuronal cells and promoting the formation of Lewy bodies, a hallmark of Parkinson's pathology. This results in the loss of dopaminergic neurons, manifesting as movement disorders. α-Synuclein aggregation triggers innate immune responses by activating microglial cells, leading to phagocytic activity and the expression of neuroprotective antimicrobial peptides (AMPs). However, sustained AMP expression or chronic inflammation resulting from inadequate microglial phagocytosis can induce neuronal toxicity and apoptosis, leading to severe dopaminergic neuron loss. This review underscores the mechanistic connection between immune response pathways and α-Synuclein-mediated neurodegeneration using Drosophila models. Furthermore, we extensively explore factors influencing neuroinflammation and key immune signaling pathways implicated in neurodegenerative diseases, particularly Parkinson's disease. Given the limited success of traditional treatments, recent research has focused on therapies targeting inflammatory signaling pathways. Some of these approaches have shown promising results in animal models and clinical trials. We provide an overview of current therapeutic strategies showing potential in treating neurodegenerative diseases, offering new avenues for future research and treatment development.
Collapse
|
3
|
Idowu OK, Dosumu OO, Boboye AS, Oremosu AA, Mohammed AA. Lauric acid with or without levodopa ameliorates Parkinsonism in genetically modified model of Drosophila melanogaster via the oxidative-inflammatory-apoptotic pathway. Brain Behav 2024; 14:e70001. [PMID: 39245995 PMCID: PMC11381577 DOI: 10.1002/brb3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD), the most prevalent type of Parkinsonism, is a progressive neurological condition characterized by a range of motor and non-motor symptoms. The complicated etiology of PD is thought to involve a summation of aging, genetic predisposition, and environmental variables. However, the α-synuclein protein plays a significant role in the disease's pathophysiology. MATERIALS AND METHODS The UAS-α-Syn and Ddc-Gal4 strains were crossed to produce offspring referred to as PD flies. The entire population of flies was divided into five groups, each having about 100 flies and five replicates. The control group (w1118) and the PD group not receiving treatment were exposed to lauric acid (LA)/levodopa (LD)-free diet, while the PD groups that received treatments were fed with either a 250 mg/kg LA diet, a 250 mg/kg LD diet, or a combination of the two for 21 days. Longevity, geotaxis, and olfactory assays were performed in addition to other biochemical tests. RESULTS As a result of the overexpression of α-synuclein, the locomotive capacity, lifespan, and antioxidant status were all significantly (p < .05) reduced, and the apoptotic and neuroinflammatory activities were increased. Nevertheless, the majority of the treated flies improved significantly (p < .05). CONCLUSION LA, whether combined with LD or not, elicited a significant response in α-synuclein/dopa decarboxylase genetically modified Drosophila melanogaster Parkinsonism models.
Collapse
Affiliation(s)
- Olumayowa K Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olufunke O Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayodeji S Boboye
- Department of Anatomy, College of Health Sciences, Federal University of Technology, Akure, Nigeria
| | - Ademola A Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| |
Collapse
|
4
|
Nguyen HN, Galleri G, Rassu A, Ciampelli C, Bernardoni R, Galioto M, Albani D, Crosio C, Iaccarino C. Evaluation of Neuroinflammatory Contribution to Neurodegeneration in LRRK2 Drosophila Models. Biomedicines 2024; 12:1555. [PMID: 39062128 PMCID: PMC11274873 DOI: 10.3390/biomedicines12071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Pathological mutations in the LRRK2 gene are the major genetic cause of Parkinson's disease (PD). Although several animal models with either LRRK2 down- or over-expression have been developed, the physiological function of LRRK2 remains elusive. LRRK2 is constitutively expressed in various tissues including neurons and glial cells, but importantly, it is expressed at low levels in dopaminergic neurons, further contributing to the cryptic function of LRRK2. Significant levels of LRRK2 protein and mRNA have been detected in peripheral blood mononuclear cells, lymph nodes, the spleen, and primary microglia, strongly suggesting the contribution of inflammatory cells to neuronal degeneration. In this research article, using Drosophila LRRK2 models, we were able to demonstrate a significant contribution of glial cells to the LRRK2 pathological phenotype. Furthermore, in Drosophila, neurodegeneration is associated with a significant and important increase in specific inflammatory peptides. Finally, levetiracetam, a compound widely used in human therapy to treat epilepsy, was able to rescue both neuronal degeneration and neuroinflammation.
Collapse
Affiliation(s)
- Hoai Nam Nguyen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (G.G.); (A.R.)
| | - Grazia Galleri
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (G.G.); (A.R.)
| | - Antonio Rassu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (G.G.); (A.R.)
| | - Cristina Ciampelli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (G.G.); (A.R.)
| | - Roberto Bernardoni
- Department Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (G.G.); (A.R.)
| | - Diego Albani
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (G.G.); (A.R.)
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy (G.G.); (A.R.)
| |
Collapse
|
5
|
Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ, El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation 2024; 21:32. [PMID: 38263227 PMCID: PMC10807115 DOI: 10.1186/s12974-024-03024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Ruchi Sharma
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Victor A da Silva
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Bianca C Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Annabel J Curle
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Vandana Kothakota
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Maria V Hangad
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Institute On Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
6
|
Al-Ayari EA, Shehata MG, El-Hadidi M, Shaalan MG. In silico SNP prediction of selected protein orthologues in insect models for Alzheimer's, Parkinson's, and Huntington's diseases. Sci Rep 2023; 13:18986. [PMID: 37923901 PMCID: PMC10624829 DOI: 10.1038/s41598-023-46250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Alzheimer's, Parkinson's, and Huntington's are the most common neurodegenerative diseases that are incurable and affect the elderly population. Discovery of effective treatments for these diseases is often difficult, expensive, and serendipitous. Previous comparative studies on different model organisms have revealed that most animals share similar cellular and molecular characteristics. The meta-SNP tool includes four different integrated tools (SIFT, PANTHER, SNAP, and PhD-SNP) was used to identify non synonymous single nucleotide polymorphism (nsSNPs). Prediction of nsSNPs was conducted on three representative proteins for Alzheimer's, Parkinson's, and Huntington's diseases; APPl in Drosophila melanogaster, LRRK1 in Aedes aegypti, and VCPl in Tribolium castaneum. With the possibility of using insect models to investigate neurodegenerative diseases. We conclude from the protein comparative analysis between different insect models and nsSNP analyses that D. melanogaster is the best model for Alzheimer's representing five nsSNPs of the 21 suggested mutations in the APPl protein. Aedes aegypti is the best model for Parkinson's representing three nsSNPs in the LRRK1 protein. Tribolium castaneum is the best model for Huntington's disease representing 13 SNPs of 37 suggested mutations in the VCPl protein. This study aimed to improve human neural health by identifying the best insect to model Alzheimer's, Parkinson's, and Huntington's.
Collapse
Affiliation(s)
- Eshraka A Al-Ayari
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Magdi G Shehata
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS) , Nile University, Giza, Egypt
| | - Mona G Shaalan
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Elguero JE, Liu G, Tiemeyer K, Bandyadka S, Gandevia H, Duro L, Yan Z, McCall K. Defective phagocytosis leads to neurodegeneration through systemic increased innate immune signaling. iScience 2023; 26:108052. [PMID: 37854687 PMCID: PMC10579427 DOI: 10.1016/j.isci.2023.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/01/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
In nervous system development, disease, and injury, neurons undergo programmed cell death, leaving behind cell corpses that are removed by phagocytic glia. Altered glial phagocytosis has been implicated in several neurological diseases including Alzheimer's disease. To untangle the links between glial phagocytosis and neurodegeneration, we investigated Drosophila mutants lacking the phagocytic receptor Draper. Loss of Draper leads to persistent neuronal cell corpses and age-dependent neurodegeneration. Here we investigate whether the phagocytic defects observed in draper mutants lead to chronic increased immune activation that promotes neurodegeneration. We found that the antimicrobial peptide Attacin-A is highly upregulated in the fat body of aged draper mutants and that the inhibition of the Immune deficiency (Imd) pathway in the glia and fat body of draper mutants led to reduced neurodegeneration. Taken together, these findings indicate that phagocytic defects lead to neurodegeneration via increased immune signaling, both systemically and locally in the brain.
Collapse
Affiliation(s)
- Johnny E. Elguero
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Guangmei Liu
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Katherine Tiemeyer
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Shruthi Bandyadka
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Heena Gandevia
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Lauren Duro
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Zhenhao Yan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| | - Kimberly McCall
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02115, USA
| |
Collapse
|
8
|
Titus MB, Chang AW, Popitsch N, Ebmeier CC, Bono JM, Olesnicky EC. The identification of protein and RNA interactors of the splicing factor Caper in the adult Drosophila nervous system. Front Mol Neurosci 2023; 16:1114857. [PMID: 37435576 PMCID: PMC10332324 DOI: 10.3389/fnmol.2023.1114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.
Collapse
Affiliation(s)
- M. Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W. Chang
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Niko Popitsch
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C. Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
9
|
Contreras EG, Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol Dis 2023; 180:106071. [PMID: 36898613 DOI: 10.1016/j.nbd.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Esteban G Contreras
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| | - Christian Klämbt
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| |
Collapse
|
10
|
Elguero JE, Liu G, Tiemeyer K, Gandevia H, Duro L, McCall K. Defective phagocytosis leads to neurodegeneration through systemic increased innate immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523170. [PMID: 36711924 PMCID: PMC9881959 DOI: 10.1101/2023.01.08.523170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In nervous system development, disease and injury, neurons undergo programmed cell death, leaving behind cell corpses that are removed by phagocytic glia. Altered glial phagocytosis has been implicated in several neurological diseases including Alzheimer's disease, Parkinson's disease, and traumatic brain injury. To untangle the links between glial phagocytosis and neurodegeneration, we investigated Drosophila mutants lacking the phagocytic receptor Draper. Loss of Draper leads to persistent neuronal cell corpses and age-dependent neurodegeneration. Here we investigate whether the phagocytic defects observed in draper mutants lead to chronic increased immune activation that promotes neurodegeneration. A major immune response in Drosophila is the activation of two NFκB signaling pathways that produce antimicrobial peptides, primarily in the fat body. We found that the antimicrobial peptide Attacin-A is highly upregulated in the fat body of aged draper mutants and that inhibition of the Immune deficiency (Imd) pathway in the glia and fat body of draper mutants led to reduced neurodegeneration, indicating that immune activation promotes neurodegeneration in draper mutants. Taken together, these findings indicate that phagocytic defects lead to neurodegeneration via increased immune signaling, both systemically and locally in the brain.
Collapse
Affiliation(s)
| | - Guangmei Liu
- Department of Biology, Boston University, Boston, MA 02115
| | | | - Heena Gandevia
- Department of Biology, Boston University, Boston, MA 02115
| | - Lauren Duro
- Department of Biology, Boston University, Boston, MA 02115
| | | |
Collapse
|
11
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
12
|
Delventhal R, Wooder ER, Basturk M, Sattar M, Lai J, Bolton D, Muthukumar G, Ulgherait M, Shirasu-Hiza MM. Dietary restriction ameliorates TBI-induced phenotypes in Drosophila melanogaster. Sci Rep 2022; 12:9523. [PMID: 35681073 PMCID: PMC9184478 DOI: 10.1038/s41598-022-13128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions annually and is associated with long-term health decline. TBI also shares molecular and cellular hallmarks with neurodegenerative diseases (NDs), typically increasing in prevalence with age, and is a major risk factor for developing neurodegeneration later in life. While our understanding of genes and pathways that underlie neurotoxicity in specific NDs has advanced, we still lack a complete understanding of early molecular and physiological changes that drive neurodegeneration, particularly as an individual ages following a TBI. Recently Drosophila has been introduced as a model organism for studying closed-head TBI. In this paper, we deliver a TBI to flies early in adult life, and then measure molecular and physiological phenotypes at short-, mid-, and long-term timepoints following the injury. We aim to identify the timing of changes that contribute to neurodegeneration. Here we confirm prior work demonstrating a TBI-induced decline in lifespan, and present evidence of a progressive decline in locomotor function, robust acute and modest chronic neuroinflammation, and a late-onset increase in protein aggregation. We also present evidence of metabolic dysfunction, in the form of starvation sensitivity and decreased lipids, that persists beyond the immediate injury response, but does not differ long-term. An intervention of dietary restriction (DR) partially ameliorates some TBI-induced phenotypes, including lifespan and locomotor function, though it does not alter the pattern of starvation sensitivity of injured flies. In the future, molecular pathways identified as altered following TBI—particularly in the short-, or mid-term—could present potential therapeutic targets.
Collapse
Affiliation(s)
- Rebecca Delventhal
- Department of Biology, Lake Forest College, Lake Forest, IL, 60045, USA.
| | - Emily R Wooder
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maylis Basturk
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mohima Sattar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jonathan Lai
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Danielle Bolton
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Gayathri Muthukumar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi M Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Dhankhar J, Agrawal N, Shrivastava A. Pan-neuronal expression of human mutant huntingtin protein in Drosophila impairs immune response of hemocytes. J Neuroimmunol 2021; 363:577801. [PMID: 34973473 DOI: 10.1016/j.jneuroim.2021.577801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Huntington's disease (HD) is a late-onset; progressive, dominantly inherited neurological disorder marked by an abnormal expansion of polyglutamine (poly Q) repeats in Huntingtin (HTT) protein. The pathological effects of mutant Huntingtin (mHTT) are not restricted to the nervous system but systemic abnormalities including immune dysregulation have been evidenced in clinical and experimental settings of HD. Indeed, mHTT is ubiquitously expressed and could induce cellular toxicity by directly acting on immune cells. However, it is still unclear if selective expression of mHTT exon1 in neurons could induce immune responses and hemocytes' function. In the present study, we intended to monitor perturbations in the hemocytes' population and their physiological functions in Drosophila, caused by pan-neuronal expression of mHTT protein. A measure of hemocyte count and their physiological activities caused by pan-neuronal expression of mHTT protein highlighted the extent of immune dysregulation occurring with disease progression. We found that pan-neuronal expression of mHTT significantly alters crystal cells and plasmatocyte count in larvae and adults with disease progression. Interestingly, plasmatocytes isolated from diseased conditions exhibit a gradual decline in phagocytic activity ex vivo at progressive stages of the disease as compared to age-matched control groups. In addition, diseased flies displayed elevated reactive oxygen species (ROS) in circulating plasmatocytes at the larval stage and in sessile plasmatocytes of hematopoietic pockets at terminal stages of disease. These findings strongly implicate that neuronal expression of mHTT alone is sufficient to induce non-cell-autonomous immune dysregulation in vivo.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Zoology, University of Delhi, New Delhi 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi 110007, India.
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
14
|
Swanson LC, Trujillo EA, Thiede GH, Katzenberger RJ, Shishkova E, Coon JJ, Ganetzky B, Wassarman DA. Survival Following Traumatic Brain Injury in Drosophila Is Increased by Heterozygosity for a Mutation of the NF-κB Innate Immune Response Transcription Factor Relish. Genetics 2020; 216:1117-1136. [PMID: 33109529 PMCID: PMC7768241 DOI: 10.1534/genetics.120.303776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) pathologies are caused by primary and secondary injuries. Primary injuries result from physical damage to the brain, and secondary injuries arise from cellular responses to primary injuries. A characteristic cellular response is sustained activation of inflammatory pathways commonly mediated by nuclear factor-κB (NF-κB) transcription factors. Using a Drosophila melanogaster TBI model, we previously found that the main proximal transcriptional response to primary injuries is triggered by activation of Toll and Imd innate immune response pathways that engage NF-κB factors Dif and Relish (Rel), respectively. Here, we found by mass spectrometry that Rel protein level increased in fly heads at 4-8 hr after TBI. To investigate the necessity of Rel for secondary injuries, we generated a null allele, Reldel , by CRISPR/Cas9 editing. When heterozygous but not homozygous, the Reldel mutation reduced mortality at 24 hr after TBI and increased the lifespan of injured flies. Additionally, the effect of heterozygosity for Reldel on mortality was modulated by genetic background and diet. To identify genes that facilitate effects of Reldel on TBI outcomes, we compared genome-wide mRNA expression profiles of uninjured and injured +/+, +/Reldel , and Reldel /Reldel flies at 4 hr following TBI. Only a few genes changed expression more than twofold in +/Reldel flies relative to +/+ and Reldel /Reldel flies, and they were not canonical innate immune response genes. Therefore, Rel is necessary for TBI-induced secondary injuries but in complex ways involving Rel gene dose, genetic background, diet, and possibly small changes in expression of innate immune response genes.
Collapse
Affiliation(s)
- Laura C Swanson
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Edna A Trujillo
- Department of Chemistry, College of Letters & Science, University of Wisconsin-Madison, Madison, Wisconsin 53706
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Gene H Thiede
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Rebeccah J Katzenberger
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Joshua J Coon
- Department of Chemistry, College of Letters & Science, University of Wisconsin-Madison, Madison, Wisconsin 53706
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Morgridge Institute for Research, Madison, Wisconsin 53706
| | - Barry Ganetzky
- Department of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|