1
|
Cipriano GL, Schepici G, Mazzon E, Anchesi I. Multiple Sclerosis: Roles of miRNA, lcnRNA, and circRNA and Their Implications in Cellular Pathways. Int J Mol Sci 2024; 25:2255. [PMID: 38396932 PMCID: PMC10889752 DOI: 10.3390/ijms25042255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple sclerosis (MS) is a degenerative condition characterized by axonal damage and demyelination induced by autoreactive immune cells that occur in the Central Nervous System (CNS). The interaction between epigenetic changes and genetic factors can be widely involved in the onset, development, and progression of the disease. Although numerous efforts were made to discover new therapies able to prevent and improve the course of MS, definitive curative treatments have not been found yet. However, in recent years, it has been reported that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), acting as gene expression regulators, could be used as potential therapeutic targets or biomarkers to diagnose and fight MS. In this review, we discussed the role of miRNAs, lncRNAs, and circRNAs, as well as their expression level changes and signaling pathways that are related to preclinical and human MS studies. Hence, the investigation of ncRNAs could be important to provide additional information regarding MS pathogenesis as well as promote the discovery of new therapeutic strategies or biomarkers.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Strada Statale 113, Contrada Casazza, 98124 Messina, Italy; (G.L.C.); (G.S.); (I.A.)
| | | |
Collapse
|
2
|
Vasconcelos CFM, Ribas VT, Petrs-Silva H. Shared Molecular Pathways in Glaucoma and Other Neurodegenerative Diseases: Insights from RNA-Seq Analysis and miRNA Regulation for Promising Therapeutic Avenues. Cells 2023; 12:2155. [PMID: 37681887 PMCID: PMC10486375 DOI: 10.3390/cells12172155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Advances in RNA-sequencing technologies have led to the identification of molecular biomarkers for several diseases, including neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's diseases and Amyotrophic Lateral Sclerosis. Despite the nature of glaucoma as a neurodegenerative disorder with several similarities with the other above-mentioned diseases, transcriptional data about this disease are still scarce. microRNAs are small molecules (~17-25 nucleotides) that have been found to be specifically expressed in the CNS as major components of the system regulating the development signatures of neurodegenerative diseases and the homeostasis of the brain. In this review, we sought to identify similarities between the functional mechanisms and the activated pathways of the most common neurodegenerative diseases, as well as to discuss how those mechanisms are regulated by miRNAs, using RNA-Seq as an approach to compare them. We also discuss therapeutically suitable applications for these disease hallmarks in clinical future studies.
Collapse
Affiliation(s)
- Carlos Franciney Moreira Vasconcelos
- University of Medicine of Göttingen, 37075 Göttingen, Germany
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vinicius Toledo Ribas
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
4
|
Fang J, Kuang J, Hu S, Yang X, Wan W, Li J, Fan X. Upregulated microRNA-450b-5p represses the development of acute liver failure via modulation of liver function, inflammatory response, and hepatocyte apoptosis. Immun Inflamm Dis 2023; 11:e767. [PMID: 36840487 PMCID: PMC9950875 DOI: 10.1002/iid3.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVE It has been evidenced that microRNAs (miRs) exert crucial effects on acute liver failure (ALF), while the detailed function of miR-450b-5p in ALF progression remained obscure. The purpose of this research was to unravel the regulatory mechanism of miR-450b-5p in ALF via modulating Mouse Double Minute 2 protein (MDM2). METHODS ALF was induced in mice by intraperitoneal injection of d-galactosamine ( d-GalN) and lipopolysaccharide (LPS). Adenoviruses containing overexpressed miR-450b-5p, MDM2 shRNA, and overexpressed MDM2 sequences were utilized to manipulate miR-450b-5p and MDM2 expression in the liver before the mice were treated with d-GalN/LPS-induced ALF. Subsequently, miR-450b-5p and MDM2 expression levels in liver tissues of ALF mice were examined. Serum biochemical parameters of liver function were tested, serum inflammatory factors were assessed, and the histopathological changes and hepatocyte apoptosis in liver tissues were observed. The relation between miR-450b-5p and MDM2 was verified. RESULTS In ALF mice, miR-450b-5p was low-expressed while MDM2 was high-expressed. The upregulation of miR-450b-5p or downregulation of MDM2 could alleviate liver function, mitigate the serum inflammatory response and pathological changes in liver tissues, as well as inhibit the apoptosis of hepatocytes. MiR-450b-5p targeted MDM2. MDM2 overexpression reversed the repressive effects of elevated miR-450b-5p on ALF. CONCLUSION The upregulated miR-450b-5p blocks the progression of ALF via targeting MDM2. This study contributes to affording novel therapeutic targets for ALF treatment.
Collapse
Affiliation(s)
- Jun Fang
- Department of Liver‐Gallbladder and Gastric DiseasesWu Han Hospital of Traditional Chinese MedicineWuhanHubeiPeople's Republic of China
| | - Jing Kuang
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Shuli Hu
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Xiuhong Yang
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Weibo Wan
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Jing Li
- Department of Internal Medicine‐CardiovascularWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| | - Xuepeng Fan
- Department of Intensive Care UnitWuhan No. 1 HospitalWuhanHubeiPeople's Republic of China
| |
Collapse
|
5
|
Wang Q, Chen YY, Yang ZC, Yuan HJ, Dong YW, Miao Q, Li YQ, Wang J, Yu JZ, Xiao BG, Ma CG. Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells. Chin J Integr Med 2023; 29:394-404. [PMID: 36607588 DOI: 10.1007/s11655-022-3587-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action. METHODS This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively. RESULTS GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05). CONCLUSION GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.
Collapse
Affiliation(s)
- Qing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yang-Yang Chen
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Zhi-Chao Yang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Jun Yuan
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yi-Wei Dong
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Qiang Miao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yan-Qing Li
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Jing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Department of Neurology, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie-Zhong Yu
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.,Department of Neurology, Datong Fifth People's Hospital, Datong, Shanxi Province, 037009, China
| | - Bao-Guo Xiao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200000, China
| | - Cun-Gen Ma
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China. .,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.
| |
Collapse
|
6
|
Male-specific coordinated changes in expression of miRNA genes, but not other genes within the DLK1-DIO3 locus in multiple sclerosis. Gene 2022; 836:146676. [PMID: 35714798 DOI: 10.1016/j.gene.2022.146676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]
Abstract
The role of miRNAs, small non-coding regulatory RNAs, in the molecular mechanisms of multiple sclerosis (MS) development has been intensively studied. MiRNAs tend to be clustered within imprinted regions, and the largest number of miRNA genes is observed in the DLK1-DIO3 locus. Earlier using RNA-seq we identified sex-specific upregulation of the set of miRNA genes from this locus in peripheral blood mononuclear cells (PBMC) of treatment-naive relapsing-remitting MS (RRMS) patients. In the present study we set up to independently investigate the expression of a vast array of genes present in the DLK1-DIO3 imprinted locus. First, we analyzed the expression of miRNA genes, which levels in RRMS were mostly inconsistent based on RNA-seq data and not previously explored using qPCR. We identified that all selected miRNAs - miR-337-3p and -665 from 14q32.2 cluster and miR-370c, -380, -494, -654-3p, -300, -539, -668, and -323b-5p - were upregulated in MS men, but not women when compared to controls, regardless of conflicting RNA-seq data. The expression of miRNAs from the DLK1-DIO3 locus was highly correlated, indicating the existence of a common regulatory mechanism(s) that controls miRNA expression, regardless of the position of their genes within this region. Second, we performed the expression analysis of non-miRNA genes within the locus. The genes encoding proteins (DLK1, DIO3, RTL1), long non-coding RNAs (MEG3, MEG8, and MEG9) and small nucleolar RNAs (SNORD112, SNORD113-5, SNORD113-7, SNORD114-3, SNORD114-8, SNORD114-19) were not dysregulated in RRMS both in men and women. DNA methylation analysis of selected CpG sites within the differentially methylated regions IG-DMR, MEG3-DMR, and MEG8-DMR of the DLK1-DIO3 imprinted locus pointed out that they were not involved in the regulation of miRNA gene expression in RRMS, at least in PBMC population. The question of whether the observed changes in expression of miRNA genes (given that there is a constant expression of other non-miRNA genes of the DLK1-DIO3 locus) are involved in the development of RRMS or are they a consequence of the disease progress, remains open and needs further investigation.
Collapse
|
7
|
Nguyen TPN, Kumar M, Fedele E, Bonanno G, Bonifacino T. MicroRNA Alteration, Application as Biomarkers, and Therapeutic Approaches in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23094718. [PMID: 35563107 PMCID: PMC9104163 DOI: 10.3390/ijms23094718] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential post-transcriptional gene regulators involved in various neuronal and non-neuronal cell functions and play a key role in pathological conditions. Numerous studies have demonstrated that miRNAs are dysregulated in major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, or Huntington’s disease. Hence, in the present work, we constructed a comprehensive overview of individual microRNA alterations in various models of the above neurodegenerative diseases. We also provided evidence of miRNAs as promising biomarkers for prognostic and diagnostic approaches. In addition, we summarized data from the literature about miRNA-based therapeutic applications via inhibiting or promoting miRNA expression. We finally identified the overlapping miRNA signature across the diseases, including miR-128, miR-140-5p, miR-206, miR-326, and miR-155, associated with multiple etiological cellular mechanisms. However, it remains to be established whether and to what extent miRNA-based therapies could be safely exploited in the future as effective symptomatic or disease-modifying approaches in the different human neurodegenerative disorders.
Collapse
Affiliation(s)
- T. P. Nhung Nguyen
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Mandeep Kumar
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
8
|
Elkhodiry AA, El Tayebi HM. Scavenging the hidden impacts of non-coding RNAs in multiple sclerosis. Noncoding RNA Res 2021; 6:187-199. [PMID: 34938929 PMCID: PMC8666456 DOI: 10.1016/j.ncrna.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that causes severe neurological dysfunction leading to disabilities in patients. The prevalence of the disease has been increasing gradually worldwide, and the specific etiology behind the disease is not yet fully understood. Therapies aimed against treating MS patients have been growing lately, intending to delay the disease progression and increase the patients' quality of life. Various pathways play crucial roles in developing the disease, and several therapeutic approaches have been tackling those pathways. However, these strategies have shown several side effects and inconsistent efficacy. MicroRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) have been shown to act as key players in various disease pathogenesis and development. Several proinflammatory and anti-inflammatory miRNAs have been reported to participate in the development of MS. Hence, the review assesses the role of miRNAs, lncRNAs, and circRNAs in regulating immune cell functions better to understand their impact on the molecular mechanics of MS.
Collapse
|
9
|
Baulina N, Kiselev I, Favorova O. Imprinted Genes and Multiple Sclerosis: What Do We Know? Int J Mol Sci 2021; 22:1346. [PMID: 33572862 PMCID: PMC7866243 DOI: 10.3390/ijms22031346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disease of the central nervous system that arises from interplay between non-genetic and genetic risk factors. The epigenetics functions as a link between these factors, affecting gene expression in response to external influence, and therefore should be extensively studied to improve the knowledge of MS molecular mechanisms. Among others, the epigenetic mechanisms underlie the establishment of parent-of-origin effects that appear as phenotypic differences depending on whether the allele was inherited from the mother or father. The most well described manifestation of parent-of-origin effects is genomic imprinting that causes monoallelic gene expression. It becomes more obvious that disturbances in imprinted genes at the least affecting their expression do occur in MS and may be involved in its pathogenesis. In this review we will focus on the potential role of imprinted genes in MS pathogenesis.
Collapse
Affiliation(s)
- Natalia Baulina
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ivan Kiselev
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
| | - Olga Favorova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.K.); (O.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|