1
|
Chen J, Qin M, Xiang X, Guo X, Nie L, Mao L. Lymphocytes in autoimmune encephalitis: Pathogenesis and therapeutic target. Neurobiol Dis 2024; 200:106632. [PMID: 39117118 DOI: 10.1016/j.nbd.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Autoimmune encephalitis (AE) is an inflammatory disease of the central nervous system characterized by the production of various autoimmune antibodies targeting neuronal proteins. The pathogenesis of AE remains elusive. Accumulating evidence suggests that lymphocytes, particularly B and T lymphocytes, play an integral role in the development of AE. In the last two decades, autoimmune neural antibodies have taken center stage in diagnosing AE. Recently, increasing evidence has highlighted the importance of T lymphocytes in the onset of AE. CD4+ T cells are thought to influence disease progression by secreting associated cytokines, whereas CD8+ T cells exert a cytotoxic role, causing irreversible damage to neurons mainly in patients with paraneoplastic AE. Conventionally, the first-line treatments for AE include intravenous steroids, intravenous immunoglobulin, and plasma exchange to remove pathogenic autoantibodies. However, a minority of patients are insensitive to conventional first-line treatment protocols and suffer from disease relapse, a condition referred to as refractory AE. In recent years, new treatments, such as rituximab or CAAR-T, which target pathogenic lymphocytes in patients with AE, have offered new therapeutic options for refractory AE. This review aims to describe the current knowledge about the function of B and T lymphocytes in the pathophysiology of AE and to summarize and update the immunotherapy options for treating this disease.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengting Qin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuying Xiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Mahadeen AZ, Carlson AK, Cohen JA, Galioto R, Abbatemarco JR, Kunchok A. Review of the Longitudinal Management of Autoimmune Encephalitis, Potential Biomarkers, and Novel Therapeutics. Neurol Clin Pract 2024; 14:e200306. [PMID: 38831758 PMCID: PMC11145747 DOI: 10.1212/cpj.0000000000200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/08/2024] [Indexed: 06/05/2024]
Abstract
Purpose of Review Increasing awareness and earlier diagnosis of autoimmune encephalitis (AE) have led to a greater number of patients being cared for longitudinally by neurologists. Although many neurologists are now familiar with the general approach to diagnosis and acute immunosuppression, this review aims to provide neurologists with guidance related to management beyond the acute phase of disease, including long-term immunosuppression, monitoring, potential biomarkers of disease activity, outcome measures, and symptom management. Recent Findings Observational studies in AE have demonstrated that early diagnosis and treatment is associated with improved neurologic outcomes, particularly in AE with antibodies targeting neuronal cell surface/synaptic proteins. The literature regarding long-term management is evolving. In addition to traditional immunosuppressive approaches, there is emerging use of novel immunosuppressive therapies (ISTs) in case series, and several randomized controlled trials are planned. Novel biomarkers of disease activity and methods to measure outcomes and response to treatment are being explored. Furthermore, it is increasingly recognized that many individuals have chronic symptoms affecting quality of life including seizures, cognitive impairment, fatigue, sleep disorders, and mood disorders, and there are emerging data supporting the use of patient centered outcome measures and multidisciplinary symptom-based care. Summary This review aims to summarize recent literature and offer a practical approach to long-term management of adult patients with AE through a multidisciplinary approach. We summarize current knowledge on ISTs, potential biomarkers of disease activity, outcome measures, and long-term sequelae. Further research is needed to answer questions regarding optimal IST, biomarker validity, and sequelae of disease.
Collapse
Affiliation(s)
- Ahmad Z Mahadeen
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Alise K Carlson
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Jeffrey A Cohen
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Rachel Galioto
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Justin R Abbatemarco
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| | - Amy Kunchok
- Department of Neurology (AZM), University of Mississippi Medical Center, Jackson; and Cleveland Clinic Mellen Center (AKC, JAC, RG, JRA, AK), OH
| |
Collapse
|
3
|
Dutra LA, Silva PVDC, Ferreira JHF, Marques AC, Toso FF, Vasconcelos CCF, Brum DG, Pereira SLDA, Adoni T, Rocha LJDA, Sampaio LPDB, Sousa NADC, Paolilo RB, Pizzol AD, Costa BKD, Disserol CCD, Pupe C, Valle DAD, Diniz DS, Abrantes FFD, Schmidt FDR, Cendes F, Oliveira FTMD, Martins GJ, Silva GD, Lin K, Pinto LF, Santos MLSF, Gonçalves MVM, Krueger MB, Haziot MEJ, Barsottini OGP, Nascimento OJMD, Nóbrega PR, Proveti PM, Castilhos RMD, Daccach V, Glehn FV. Brazilian consensus recommendations on the diagnosis and treatment of autoimmune encephalitis in the adult and pediatric populations. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-15. [PMID: 39089672 DOI: 10.1055/s-0044-1788586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND Autoimmune encephalitis (AIE) is a group of inflammatory diseases characterized by the presence of antibodies against neuronal and glial antigens, leading to subacute psychiatric symptoms, memory complaints, and movement disorders. The patients are predominantly young, and delays in treatment are associated with worse prognosis. OBJECTIVE With the support of the Brazilian Academy of Neurology (Academia Brasileira de Neurologia, ABN) and the Brazilian Society of Child Neurology (Sociedade Brasileira de Neurologia Infantil, SBNI), a consensus on the diagnosis and treatment of AIE in Brazil was developed using the Delphi method. METHODS A total of 25 panelists, including adult and child neurologists, participated in the study. RESULTS The panelists agreed that patients fulfilling criteria for possible AIE should be screened for antineuronal antibodies in the serum and cerebrospinal fluid (CSF) using the tissue-based assay (TBA) and cell-based assay (CBA) techniques. Children should also be screened for anti-myelin oligodendrocyte glucoprotein antibodies (anti-MOG). Treatment should be started within the first 4 weeks of symptoms. The first-line option is methylprednisolone plus intravenous immunoglobulin (IVIG) or plasmapheresis, the second-line includes rituximab and/or cyclophosphamide, while third-line treatment options are bortezomib and tocilizumab. Most seizures in AIE are symptomatic, and antiseizure medications may be weaned after the acute stage. In anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis, the panelists have agreed that oral immunosuppressant agents should not be used. Patients should be evaluated at the acute and postacute stages using functional and cognitive scales, such as the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the Modified Rankin Scale (mRS), and the Clinical Assessment Scale in Autoimmune Encephalitis (CASE). CONCLUSION The present study provides tangible evidence for the effective management of AIE patients within the Brazilian healthcare system.
Collapse
Affiliation(s)
- Lívia Almeida Dutra
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, São Paulo SP, Brazil
| | | | | | | | - Fabio Fieni Toso
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, São Paulo SP, Brazil
| | | | - Doralina Guimarães Brum
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Neurologia, Psicologia e Psiquiatria, Botucatu SP, Brazil
| | - Samira Luisa Dos Apóstolos Pereira
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Tarso Adoni
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | | | | | | | - Renata Barbosa Paolilo
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto da Criança, São Paulo SP, Brazil
| | - Angélica Dal Pizzol
- Hospital Moinhos de Vento, Departamento de Neurologia, Porto Alegre RS, Brazil
| | - Bruna Klein da Costa
- Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre RS, Brazil
- Santa Casa de Misericórdia de Porto Alegre, Porto Alegre RS, Brazil
| | - Caio César Diniz Disserol
- Universidade Federal do Paraná, Hospital das Clínicas, Curitiba PR, Brazil
- Instituto de Neurologia de Curitiba, Curitiba PR, Brazil
| | - Camila Pupe
- Universidade Federal Fluminense, Niterói RJ, Brazil
| | | | | | | | | | | | | | | | - Guilherme Diogo Silva
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | - Katia Lin
- Universidade Federal de Santa Catarina, Florianópolis SC, Brazil
| | - Lécio Figueira Pinto
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| | | | | | | | | | | | | | | | | | | | - Vanessa Daccach
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto SP, Brazil
| | | |
Collapse
|
4
|
Shang H, Shen X, Yu X, Zhang J, Jia Y, Gao F. B-cell targeted therapies in autoimmune encephalitis: mechanisms, clinical applications, and therapeutic potential. Front Immunol 2024; 15:1368275. [PMID: 38562943 PMCID: PMC10982343 DOI: 10.3389/fimmu.2024.1368275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Autoimmune encephalitis (AE) broadly refers to inflammation of the brain parenchyma mediated by autoimmune mechanisms. In most patients with AE, autoantibodies against neuronal cell surface antigens are produced by B-cells and induce neuronal dysfunction through various mechanisms, ultimately leading to disease progression. In recent years, B-cell targeted therapies, including monoclonal antibody (mAb) therapy and chimeric antigen receptor T-cell (CAR-T) therapy, have been widely used in autoimmune diseases. These therapies decrease autoantibody levels in patients and have shown favorable results. This review summarizes the mechanisms underlying these two B-cell targeted therapies and discusses their clinical applications and therapeutic potential in AE. Our research provides clinicians with more treatment options for AE patients whose conventional treatments are not effective.
Collapse
Affiliation(s)
- Haodong Shang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Shen
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoxiao Yu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongliang Jia
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Kvam KA, Stahl JP, Chow FC, Soldatos A, Tattevin P, Sejvar J, Mailles A. Outcome and Sequelae of Autoimmune Encephalitis. J Clin Neurol 2024; 20:3-22. [PMID: 38179628 PMCID: PMC10782092 DOI: 10.3988/jcn.2023.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Autoimmune etiologies are a common cause for encephalitis. The clinical syndromes consistent with autoimmune encephalitis are both distinct and increasingly recognized, but less is known about persisting sequelae or outcomes. We searched PubMed for reports on outcomes after autoimmune encephalitis. Studies assessing validated, quantitative outcomes were included. We performed a narrative review of the published literature of outcomes after autoimmune encephalitis. We found 146 studies that produced outcomes data. The mortality rates were 6%-19% and the relapse risks were 10%-62%. Most patients achieved a good outcome based on a score on the modified Rankin Scale (mRS) of ≤2. Forty-nine studies evaluated outcomes beyond mRS; these studies investigated cognitive outcome, psychiatric sequelae, neurological deficits, global function, and quality-of-life/patient-reported outcomes using various tools at varying time points after the index hospital discharge. These more-detailed assessments revealed that most patients had persistent impairments, with frequent deficits in cognitive function, especially memory and attention. Depression and anxiety were also common. Many of these sequelae continued to improve over months or even years after the acute illness. While we found that lasting impairments were common among survivors of autoimmune encephalitis, additional research is needed to better understand the nature and impact of these sequelae. Standardized evaluation protocols are needed to improve the ability to compare outcomes across studies, guide rehabilitation strategies, and inform outcomes of interest in treatment trials as the field advances.
Collapse
Affiliation(s)
- Kathryn A Kvam
- Department of Neurology & Neurological Sciences, Center for Academic Medicine, Stanford University, Stanford, CA, USA.
| | | | - Felicia C Chow
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, CA, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pierre Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
| | - James Sejvar
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alexandra Mailles
- Department of Infectious Diseases, Santé publique France, Saint-Maurice, France
| |
Collapse
|
6
|
Kerstens J, Titulaer MJ. Overview of treatment strategies in paraneoplastic neurological syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2024; 200:97-112. [PMID: 38494299 DOI: 10.1016/b978-0-12-823912-4.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Treatment strategies in paraneoplastic neurological syndromes rely on the three pillars of tumor treatment, immunotherapy, and symptomatic treatment, the first one being by far the most important in the majority of patients and syndromes. Classically, antibodies against extracellular antigens are directly pathogenic, and patients with these syndromes are more responsive to immunomodulatory or immunosuppressive treatments than the ones with antibodies against intracellular targets. This chapter first discusses some general principles of tumor treatment and immunotherapy, followed by a closer look at specific treatment options for different clinical syndromes, focusing on symptomatic treatments.
Collapse
Affiliation(s)
- Jeroen Kerstens
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten J Titulaer
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Monson N, Smith C, Greenberg H, Plumb P, Guzman A, Tse K, Chen D, Zhang W, Morgan M, Speed H, Powell C, Batra S, Cowell L, Christley S, Vernino S, Blackburn K, Greenberg B. VH2+ Antigen-Experienced B Cells in the Cerebrospinal Fluid Are Expanded and Enriched in Pediatric Anti-NMDA Receptor Encephalitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1332-1339. [PMID: 37712756 PMCID: PMC10593502 DOI: 10.4049/jimmunol.2300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pediatric and adult autoimmune encephalitis (AE) are often associated with Abs to the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Very little is known regarding the cerebrospinal fluid humoral immune profile and Ab genetics associated with pediatric anti-NMDAR-AE. Using a combination of cellular, molecular, and immunogenetics tools, we collected cerebrospinal fluid from pediatric subjects and generated 1) flow cytometry data to calculate the frequency of B cell subtypes in the cerebrospinal fluid of pediatric subjects with anti-NMDAR-AE and controls, 2) a panel of recombinant human Abs from a pediatric case of anti-NMDAR-AE that was refractory to treatment, and 3) a detailed analysis of the Ab genes that bound the NR1 subunit of the NMDAR. Ag-experienced B cells including memory cells, plasmablasts, and Ab-secreting cells were expanded in the pediatric anti-NMDAR-AE cohort, but not in the controls. These Ag-experienced B cells in the cerebrospinal fluid of a pediatric case of NMDAR-AE that was refractory to treatment had expanded use of variable H chain family 2 (VH2) genes with high somatic hypermutation that all bound to the NR1 subunit of the NMDAR. A CDR3 motif was identified in this refractory case that likely drove early stage activation and expansion of naive B cells to Ab-secreting cells, facilitating autoimmunity associated with pediatric anti-NMDAR-AE through the production of Abs that bind NR1. These features of humoral immune responses in the cerebrospinal fluid of pediatric anti-NMDAR-AE patients may be relevant for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Nancy Monson
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | - Chad Smith
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Hannah Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Patricia Plumb
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Alyssa Guzman
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Key Tse
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Ding Chen
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Wei Zhang
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Miles Morgan
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Haley Speed
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Craig Powell
- Department of Neurobiology, Civitan International Research Center, University of Alabama Marnix E. Heersink School of Medicine, Birmingham, AL
| | - Sushobhna Batra
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Lindsay Cowell
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Steve Vernino
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | - Kyle Blackburn
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
8
|
Wischmann J, Borowski K, Havla J, Thaler FS, Winkler T, Jung T, Straube A, Masouris I. Case report: Anti septin-5-encephalitis as a treatable cause of cerebellar ataxia and psychiatric symptoms. Front Neurol 2023; 14:1220295. [PMID: 37435157 PMCID: PMC10331165 DOI: 10.3389/fneur.2023.1220295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Objectives Anti-septin-5 encephalitis is a rare disease with only few published cases, mainly based on retrospective CSF and serum analyses. Predominant symptoms are cerebellar ataxia and oculomotor abnormalities. Due to the rareness of the disease, treatment recommendations are scarce. Herein, we prospectively describe the clinical course of a female patient with anti-septin-5 encephalitis. Methods We describe diagnostic workup, treatment and follow-up of a 54-year-old patient presenting with vertigo, unsteady gait, lack of drive and behavioral changes. Results Clinical examination revealed severe cerebellar ataxia, saccadic smooth pursuit, upbeat-nystagmus, and dysarthria. Additionally, the patient presented with a depressive syndrome. MRI of the brain and spinal cord were normal. CSF analysis showed lymphocytic pleocytosis (11 cells/μl). Extensive antibody testing revealed anti septin-5 IgG in both CSF and serum without coexisting anti-neuronal antibodies. PET/CT detected no signs of malignancy. Corticosteroids, plasma exchange, and rituximab led to transient clinical improvement followed by relapse. Re-applied treatment with plasma exchange followed by bortezomib resulted in moderate but sustained clinical improvement. Discussion Anti septin-5 encephalitis represents a rare but treatable and therefore relevant differential diagnosis in patients with cerebellar ataxia. Psychiatric symptoms can be observed in anti septin-5 encephalitis. Immunosuppressive treatment including bortezomib is moderately effective.
Collapse
Affiliation(s)
- Johannes Wischmann
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kathrin Borowski
- Clinical Immunological Laboratory Prof. Dr. med. Winfried Stöcker, Luebeck, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Franziska S. Thaler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias Winkler
- Department of Neurology, kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany
| | - Tobias Jung
- Department of Neurology, kbo-Inn-Salzach-Klinikum, Wasserburg am Inn, Germany
| | - Andreas Straube
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ilias Masouris
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
9
|
Kelly MJ, Irani SR. Autoimmune encephalitis: Should we consider third-line immunotherapies earlier? Eur J Neurol 2023; 30:1167-1169. [PMID: 36794337 DOI: 10.1111/ene.15728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Affiliation(s)
- Mark J Kelly
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
10
|
Flammer J, Neziraj T, Rüegg S, Pröbstel AK. Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes. Drugs 2023; 83:135-158. [PMID: 36696027 PMCID: PMC9875200 DOI: 10.1007/s40265-022-01826-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Collapse
Affiliation(s)
- Julia Flammer
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tradite Neziraj
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland. .,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Räuber S, Schroeter CB, Strippel C, Nelke C, Ruland T, Dik A, Golombeck KS, Regner-Nelke L, Paunovic M, Esser D, Münch C, Rosenow F, van Duijn M, Henes A, Ruck T, Amit I, Leypoldt F, Titulaer MJ, Wiendl H, Meuth SG, Meyer Zu Hörste G, Melzer N. Cerebrospinal fluid proteomics indicates immune dysregulation and neuronal dysfunction in antibody associated autoimmune encephalitis. J Autoimmun 2023; 135:102985. [PMID: 36621173 DOI: 10.1016/j.jaut.2022.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
Autoimmune Encephalitis (AE) spans a group of non-infectious inflammatory conditions of the central nervous system due to an imbalanced immune response. Aiming to elucidate the pathophysiological mechanisms of AE, we applied an unsupervised proteomic approach to analyze the cerebrospinal fluid (CSF) protein profile of AE patients with autoantibodies against N-methyl-d-aspartate receptor (NMDAR) (n = 9), leucine-rich glioma-inactivated protein 1 (LGI1) (n = 9), or glutamate decarboxylase 65 (GAD65) (n = 8) compared to 9 patients with relapsing-remitting multiple sclerosis as inflammatory controls, and 10 patients with somatic symptom disorder as non-inflammatory controls. We found a dysregulation of the complement system, a disbalance between pro-inflammatory and anti-inflammatory proteins on the one hand, and dysregulation of proteins involved in synaptic transmission, synaptogenesis, brain connectivity, and neurodegeneration on the other hand to a different extent in all AE subtypes compared to non-inflammatory controls. Furthermore, elevated levels of several proteases and reduction in protease inhibitors could be detected in all AE subtypes compared to non-inflammatory controls. Moreover, the different AE subtypes showed distinct protein profiles compared to each other and inflammatory controls which may facilitate future identification of disease-specific biomarkers. Overall, CSF proteomics provides insights into the complex pathophysiological mechanisms of AE, including immune dysregulation, neuronal dysfunction, neurodegeneration, and altered protease function.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Christopher Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tillmann Ruland
- Department of Psychiatry, University of Münster, 48149, Münster, Germany; Department of Psychiatry, Maria Brunn Hospital, 48163, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kristin S Golombeck
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Liesa Regner-Nelke
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuela Paunovic
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, 24105, Kiel, Lübeck, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Faculty of Medicine, Theodor-Stern-Kai 7, Building 75, 60590, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Frankfurt am Main, Germany; Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martijn van Duijn
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Antonia Henes
- Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, 24105, Kiel, Lübeck, Germany; Department of Neurology, Faculty of Medicine, Kiel University, 24105, Kiel, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus MC University Medical Center, 3015 GD, Rotterdam, the Netherlands
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University of Münster, 48149, Münster, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
Nguyen L, Wang C. Anti-NMDA Receptor Autoimmune Encephalitis: Diagnosis and Management Strategies. Int J Gen Med 2023; 16:7-21. [PMID: 36628299 PMCID: PMC9826635 DOI: 10.2147/ijgm.s397429] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most recognized form of autoimmune encephalitis. It is characterized by a constellation of neurologic and psychiatric features along with positive NMDAR antibody, which is more sensitive and specific in CSF than serum. All patients should be screened at least once for neoplasm, with ovarian teratoma being found in most tumor-related cases. In the acute phase, first-line immunotherapy, often a combination of high-dose steroids, immunoglobulins, and/or plasma exchange, is strongly recommended. When first-line therapy fails, escalation to second-line immunotherapy, particularly rituximab, can further improve outcomes and prevent relapses. In refractory cases, additional complementary immunotherapies, such as cyclophosphamide, bortezomib and/or tocilizumab may be considered. Relapses occur in 10-30% of cases, mostly within the first two years from onset. Individuals should be followed up to determine if chronic maintenance therapy is required.
Collapse
Affiliation(s)
- Linda Nguyen
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Correspondence: Linda Nguyen, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA, Tel +1-214-645-0136, Fax +1-214-645-8238, Email
| | - Cynthia Wang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
李 宇, 蒋 莉. Recent research on immunotherapy for anti-N-methyl-D-aspartate receptor encephalitis. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:948-953. [PMID: 36036136 PMCID: PMC9425858 DOI: 10.7499/j.issn.1008-8830.2204021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/03/2022] [Indexed: 01/24/2023]
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a central nervous system disease characterized by neurological and psychiatric symptoms. Immunotherapy is the basic treatment for this disease, including first- and second-line therapies for the acute stage and the long-course therapy for the chronic stage. Anti-NMDAR encephalitis often has a good prognosis, but some patients may still have neurological dysfunction due to poor response to current immunotherapy. In addition, the adverse reactions and economic burden of drugs are practical problems in clinical practice. To solve the above problems, continuous improvements have been made in immunotherapy regimens in terms of dose, route of administration, and course of treatment, and some new immunotherapy drugs have emerged. This article reviews the recent research on immunotherapy for anti-NMDAR encephalitis.
Collapse
|
14
|
Wang B, Wang C, Feng J, Hao M, Guo S. Clinical Features, Treatment, and Prognostic Factors in Neuronal Surface Antibody-Mediated Severe Autoimmune Encephalitis. Front Immunol 2022; 13:890656. [PMID: 35720290 PMCID: PMC9205246 DOI: 10.3389/fimmu.2022.890656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Objective This study aimed to determine the clinical characteristics and evaluate the efficacy of immunotherapy and the long-term prognosis of severe autoimmune encephalitis (AE) in China. Methods Clinical features, laboratory or radiological findings, and treatment outcomes of 60 severe patients with AE from January 1, 2014, to December 31, 2020, were collected. Continuous variables were compared using the t-test and the nonparametric Mann–Whitney U test, as appropriate. Univariate and multivariable logistic regression analyses were performed to assess the correlations between factors, treatment responses, and prognosis of severe AE. Results The median age of symptom onset was 35 years. Tumors were identified in 23.3% of patients, and 36/60 (60%) patients responded to first-line immunotherapy. Second-line immunotherapy was implemented in 26/60 (43.3%) patients. A significant clinical benefit was observed in 19/26 (73.1%) patients treated with lower dosage rituximab; seven patients were still refractory and received bortezomib as an add-on therapy. During the last follow-up, 48/60 (80%) patients achieved good outcomes (mRS, 0–2), and 10 died. Seventeen patients experienced relapses. A high CD19+ B-cell count (OR, 1.197; 95% CI [1.043–1.496]; p = 0.041) and a lower neutrophil-to-lymphocyte ratio (NLR; OR, 0.686; 95% CI [0.472–0.884]; p = 0.015) predict the response to first-line treatment and good prognosis, respectively. Conclusions Patients with severe AE were in critical condition at baseline but could be salvaged after effective rescue immunotherapy. A lower dosage of rituximab could be an optimal option for severe AE. CD19+ B-cell count and NLR may provide prognostic information for predicting treatment response and outcome of severe AE.
Collapse
Affiliation(s)
- Baojie Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neurology, Shandong Second Provincial General Hospital, Jinan, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Jianli Feng
- Department of Neurology, Shandong Second Provincial General Hospital, Jinan, China
| | - Maolin Hao
- Department of Neurology, Shandong Second Provincial General Hospital, Jinan, China
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
15
|
Aguilar-Castillo MJ, Cabezudo-García P, Ciano-Petersen NL, García-Martin G, Marín-Gracia M, Estivill-Torrús G, Serrano-Castro PJ. Immune Mechanism of Epileptogenesis and Related Therapeutic Strategies. Biomedicines 2022; 10:716. [PMID: 35327518 PMCID: PMC8945207 DOI: 10.3390/biomedicines10030716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Immunologic and neuroinflammatory pathways have been found to play a major role in the pathogenesis of many neurological disorders such as epilepsy, proposing the use of novel therapeutic strategies. In the era of personalized medicine and in the face of the exhaustion of anti-seizure therapeutic resources, it is worth looking at the current or future possibilities that neuroimmunomodulator or anti-inflammatory therapy can offer us in the management of patients with epilepsy. For this reason, we performed a narrative review on the recent advances on the basic epileptogenic mechanisms related to the activation of immunity or neuroinflammation with special attention to current and future opportunities for novel treatments in epilepsy. Neuroinflammation can be considered a universal phenomenon and occurs in structural, infectious, post-traumatic, autoimmune, or even genetically based epilepsies. The emerging research developed in recent years has allowed us to identify the main molecular pathways involved in these processes. These molecular pathways could constitute future therapeutic targets for epilepsy. Different drugs current or in development have demonstrated their capacity to inhibit or modulate molecular pathways involved in the immunologic or neuroinflammatory mechanisms described in epilepsy. Some of them should be tested in the future as possible antiepileptic drugs.
Collapse
Affiliation(s)
- María José Aguilar-Castillo
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Biotechnology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
| | - Pablo Cabezudo-García
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Nicolas Lundahl Ciano-Petersen
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Guillermina García-Martin
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Marta Marín-Gracia
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Guillermo Estivill-Torrús
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - Pedro Jesús Serrano-Castro
- Epilepsy Unit, Regional University Hospital of Málaga, 29010 Málaga, Spain; (M.J.A.-C.); (P.C.-G.); (N.L.C.-P.); (G.G.-M.); (M.M.-G.); (G.E.-T.)
- Andalusian Network for Clinical and Translational Research in Neurology (Neuro-RECA), 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA), 29010 Málaga, Spain
- Neurology Service, Regional University Hospital of Málaga, 29010 Málaga, Spain
- Department of Medicine, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
16
|
Seery N, Butzkueven H, O'Brien TJ, Monif M. Contemporary advances in anti-NMDAR antibody (Ab)-mediated encephalitis. Autoimmun Rev 2022; 21:103057. [PMID: 35092831 DOI: 10.1016/j.autrev.2022.103057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022]
Abstract
The study of antibody (Ab)-mediated encephalitis has advanced dramatically since the discovery of antibodies directed against the N-methyl-D-aspartate receptor (NMDAR) in association with a unique neuro-psychiatric syndrome, over a decade-and-a-half ago. Anti-NMDAR Ab-mediated encephalitis now represents the most well characterised form of autoimmune encephalitis. The disease most commonly manifests in young women, but all ages and both sexes can be affected. Autoantibodies may arise in the context of two well-recognised disease triggers in a proportion of patients, and ultimately facilitate NMDAR displacement from synapses. Various CSF cytokines, chemokines, and other molecules have been explored as candidate biomarkers but are limited in sensitivity and specificity. The clinical spectrum is diverse, with evolution and a combination of neuro-psychiatric abnormalities at disease nadir common. Anti-NMDAR Ab-mediated encephalitis is immunotherapy responsive, and a near-majority ultimately acquire a broadly favourable clinical outcome. The diagnosis, and more particularly, the management of the disease can still hold considerable challenges. Moreover, well-defined biomarkers remain elusive. The present review will therefore delineate pathogenic and clinical advances to date in anti-NMDAR antibody-mediated encephalitis.
Collapse
Affiliation(s)
- Nabil Seery
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Abstract
Autoimmune encephalitis represents a potentially treatable immune-mediated condition that is being more frequently recognized. Prompt immunotherapy is a key factor for the management of autoimmune encephalitis. First-line treatments include intravenous steroids, plasma exchange, and intravenous immunoglobulins, which can be combined in most severe cases. Rituximab and cyclophosphamide are administered as second-line agents in unresponsive cases. A minority of patients may still remain refractory, thus representing a major clinical challenge. In these cases, treatment strategies are controversial, and no guidelines exist. Treatments proposed for refractory autoimmune encephalitis include (1) cytokine-based drugs (such as tocilizumab, interleukin-2/basiliximab, anakinra, and tofacitinib); (2) plasma cell-depleting agents (such as bortezomib and daratumumab); and (3) treatments targeting intrathecal immune cells or their trafficking through the blood-brain barrier (such as intrathecal methotrexate and natalizumab). The efficacy evidence of these drugs is mostly based on case reports or small case series, with few reported controlled studies or systematic reviews. The aim of the present review is to summarize the current evidence and related methodological issues in the use of these drugs for the treatment of refractory autoimmune encephalitis.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37135, Verona, Italy
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37135, Verona, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37135, Verona, Italy.
| |
Collapse
|