1
|
Kinoshita K, Motomura K, Ushida K, Hirata Y, Konno A, Hirai H, Kotani S, Hitora-Imamura N, Kurauchi Y, Seki T, Katsuki H. Nurr1 overexpression in the primary motor cortex alleviates motor dysfunction induced by intracerebral hemorrhage in the striatum in mice. Neurotherapeutics 2024; 21:e00370. [PMID: 38704311 PMCID: PMC11305294 DOI: 10.1016/j.neurot.2024.e00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Hemorrhage-induced injury of the corticospinal tract (CST) in the internal capsule (IC) causes severe neurological dysfunction in both human patients and rodent models of intracerebral hemorrhage (ICH). A nuclear receptor Nurr1 (NR4A2) is known to exert anti-inflammatory and neuroprotective effects in several neurological disorders. Previously we showed that Nurr1 ligands prevented CST injury and alleviated neurological deficits after ICH in mice. To prove direct effect of Nurr1 on CST integrity, we examined the effect of Nurr1 overexpression in neurons of the primary motor cortex on pathological consequences of ICH in mice. ICH was induced by intrastriatal injection of collagenase type VII, where hematoma invaded into IC. Neuron-specific overexpression of Nurr1 was induced by microinjection of synapsin I promoter-driven adeno-associated virus (AAV) vector into the primary motor cortex. Nurr1 overexpression significantly alleviated motor dysfunction but showed only modest effect on sensorimotor dysfunction after ICH. Nurr1 overexpression also preserved axonal structures in IC, while having no effect on hematoma-associated inflammatory events, oxidative stress, and neuronal death in the striatum after ICH. Immunostaining revealed that Nurr1 overexpression increased the expression of Ret tyrosine kinase and phosphorylation of Akt and ERK1/2 in neurons in the motor cortex. Moreover, administration of Nurr1 ligands 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane or amodiaquine increased phosphorylation levels of Akt and ERK1/2 as well as expression of glial cell line-derived neurotrophic factor and Ret genes in the cerebral cortex. These results suggest that the therapeutic effect of Nurr1 on striatal ICH is attributable to the preservation of CST by acting on cortical neurons.
Collapse
Affiliation(s)
- Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kensuke Motomura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuma Hirata
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shunsuke Kotani
- Global Center for Natural Resources Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Natsuko Hitora-Imamura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan; Department of Pharmacology, School of Pharmacy, Himeji Dokkyo University, Hyogo, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Atef Y, Kinoshita K, Ichihara Y, Ushida K, Hirata Y, Kurauchi Y, Seki T, Katsuki H. Therapeutic effect of allicin in a mouse model of intracerebral hemorrhage. J Pharmacol Sci 2023; 153:208-214. [PMID: 37973218 DOI: 10.1016/j.jphs.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
Natural compounds with sulfur moiety produce various biological actions that may be beneficial for the therapies of several devastative disorders of the central nervous system. Here we investigated potential therapeutic effect of allicin, an organosulfur compound derived from garlic, in a mouse model of intracerebral hemorrhage (ICH) based on intrastriatal collagenase injection. Daily intraperitoneal administration of allicin (50 mg/kg) from 3 h after induction of ICH afforded neuroprotective effects, as evidenced by the increase of surviving neurons in the hematoma, reduction of axonal transport impairment, and prevention of axon tract injury. In addition, allicin inhibited accumulation of activated microglia/macrophages around the hematoma and infiltration of neutrophils within the hematoma. Allicin also suppressed ICH-induced mRNA upregulation of pro-inflammatory factors such as interleukin 6 and C-X-C motif ligand 2 in the brain, suggesting its anti-inflammatory effect. Moreover, ICH-induced increase of malondialdehyde as well as decrease of total glutathione in the brain was attenuated by allicin. Finally, allicin-treated mice showed better recovery of sensorimotor functions after ICH than vehicle-treated mice. These results indicate that allicin produces a therapeutic effect on ICH pathology via alleviation of neuronal damage, inflammatory responses and oxidative stress in the brain.
Collapse
Affiliation(s)
- Yara Atef
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yusei Ichihara
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuma Hirata
- Department of Chemico-Pharmacological Sciences, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmacology, School of Pharmacy, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
3
|
Atef Y, Kinoshita K, Ichihara Y, Ushida K, Kurauchi Y, Seki T, Katsuki H. Distinct Pharmacological Profiles of Monosulfide and Trisulfide in an Experimental Model of Intracerebral Hemorrhage in Mice. Biol Pharm Bull 2022; 45:1699-1705. [DOI: 10.1248/bpb.b22-00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yara Atef
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Yusei Ichihara
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keisuke Ushida
- Department of Chemico-Pharmacological Sciences, School of Pharmacy, Kumamoto University
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
4
|
A Nurr1 ligand C-DIM12 attenuates brain inflammation and improves functional recovery after intracerebral hemorrhage in mice. Sci Rep 2022; 12:11009. [PMID: 35773404 PMCID: PMC9246855 DOI: 10.1038/s41598-022-15178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
We have previously reported that amodiaquine, a compound that binds to the ligand-binding domain of a nuclear receptor Nurr1, attenuates inflammatory responses and neurological deficits after intracerebral hemorrhage (ICH) in mice. 1,1-Bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) is another Nurr1 ligand that recognizes a domain of Nurr1 different from the ligand-binding domain. In the present study, mice were treated daily with C-DIM12 (50 or 100 mg/kg, p.o.) or amodiaquine (40 mg/kg, i.p.), or twice daily with 1400 W (20 mg/kg, i.p.), an inducible nitric oxide synthase (iNOS) inhibitor, from 3 h after ICH induction by microinjection of collagenase into the striatum. C-DIM12 improved the recovery of neurological function and prevented neuron loss in the hematoma, while suppressed activation of microglia/macrophages and expression of inflammatory mediators interleukin-6 and CC chemokine ligand 2. In addition, C-DIM12 as well as amodiaquine preserved axonal structures in the internal capsule and axonal transport function. We also found that C-DIM12 and amodiaquine suppressed the increases of iNOS mRNA expression after ICH. Moreover, 1400 W improved neurological function and prevented neuron loss, activation of microglia/macrophages and axonal transport dysfunction. These results suggest that suppression of iNOS induction contributes to several features of the therapeutic effects of Nurr1 ligands.
Collapse
|