1
|
Liu D, Schwieter JW, Liu W, Mu L, Liu H. The COMT gene modulates the relationship between bilingual adaptation in executive function and decision-making: an EEG study. Cogn Neurodyn 2023; 17:893-907. [PMID: 37522041 PMCID: PMC10374516 DOI: 10.1007/s11571-022-09867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
UNLABELLED Bilingual adaptive control mechanisms appear to be linked to congenital genetic factors such as dopamine (DA) genes. However, it is unclear as to whether acquired cognitive exercise can vanquish innate influences that allow bilingual executive advantages to be shown in other cognitive areas. In the present study, we examine the relationship between gene-dependent executive control and decision-making by targeting the enzyme catecholamine-O-methyltransferase (COMT) and employing electroencephalography (EEG). Chinese-English bilinguals (N = 101) participated in a language switching task and the Iowa Gambling Task (IGT). The findings showed that COMT Val158Met polymorphism played a complex role in decision-making and bilingual executive control processing: Bilinguals with Valine (Val) homozygotes had poorer performance in the IGT, while Methionine (Met) carriers had larger switch costs in the language switching task. Second, the cross-task relationships varied among bilinguals with different COMT genotypes: Bilinguals with Met allele genotypes showed larger switch costs and better performance on the IGT. These findings suggest that bilinguals who carry Met allele are equipped with more efficient adaptive mechanisms of executive functions that are generalized to other cognitive domains. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11571-022-09867-2.
Collapse
Affiliation(s)
- Dongxue Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| | - John W. Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters, Wilfrid Laurier University, Waterloo, Canada
| | - Wenxin Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| | - Li Mu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029 China
- Key Laboratory of Brain and Cognitive Neuroscience, Dalian, 116029 Liaoning Province China
| |
Collapse
|
2
|
Liu D, Xing Z, Huang J, Schwieter JW, Liu H. Genetic bases of language control in bilinguals: Evidence from an EEG study. Hum Brain Mapp 2023; 44:3624-3643. [PMID: 37051723 PMCID: PMC10203802 DOI: 10.1002/hbm.26301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have debated whether the ability for bilinguals to mentally control their languages is a consequence of their experiences switching between languages or whether it is a specific, yet highly-adaptive, cognitive ability. The current study investigates how variations in the language-related gene FOXP2 and executive function-related genes COMT, BDNF, and Kibra/WWC1 affect bilingual language control during two phases of speech production, namely the language schema phase (i.e., the selection of one language or another) and lexical response phase (i.e., utterance of the target). Chinese-English bilinguals (N = 119) participated in a picture-naming task involving cued language switches. Statistical analyses showed that both genes significantly influenced language control on neural coding and behavioral performance. Specifically, FOXP2 rs1456031 showed a wide-ranging effect on language control, including RTs, F(2, 113) = 4.00, FDR p = .036, and neural coding across three-time phases (N2a: F(2, 113) = 4.96, FDR p = .014; N2b: F(2, 113) = 4.30, FDR p = .028, LPC: F(2, 113) = 2.82, FDR p = .060), while the COMT rs4818 (ts >2.69, FDR ps < .05), BDNF rs6265 (Fs >5.31, FDR ps < .05), and Kibra/WWC1 rs17070145 (ts > -3.29, FDR ps < .05) polymorphisms influenced two-time phases (N2a and N2b). Time-resolved correlation analyses revealed that the relationship between neural coding and cognitive performance is modulated by genetic variations in all four genes. In all, these findings suggest that bilingual language control is shaped by an individual's experience switching between languages and their inherent genome.
Collapse
Affiliation(s)
- Dongxue Liu
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of PsychologyBeijing Normal UniversityBeijingChina
| | - Zehui Xing
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| | - Junjun Huang
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| | - John W. Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters @ LaurierWilfrid Laurier UniversityWaterlooCanada
- Department of Linguistics and LanguagesMcMaster UniversityHamiltonCanada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| |
Collapse
|
3
|
Ekström AG. Motor constellation theory: A model of infants' phonological development. Front Psychol 2022; 13:996894. [PMID: 36405212 PMCID: PMC9669916 DOI: 10.3389/fpsyg.2022.996894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/24/2024] Open
Abstract
Every normally developing human infant solves the difficult problem of mapping their native-language phonology, but the neural mechanisms underpinning this behavior remain poorly understood. Here, motor constellation theory, an integrative neurophonological model, is presented, with the goal of explicating this issue. It is assumed that infants' motor-auditory phonological mapping takes place through infants' orosensory "reaching" for phonological elements observed in the language-specific ambient phonology, via reference to kinesthetic feedback from motor systems (e.g., articulators), and auditory feedback from resulting speech and speech-like sounds. Attempts are regulated by basal ganglion-cerebellar speech neural circuitry, and successful attempts at reproduction are enforced through dopaminergic signaling. Early in life, the pace of anatomical development constrains mapping such that complete language-specific phonological mapping is prohibited by infants' undeveloped supralaryngeal vocal tract and undescended larynx; constraints gradually dissolve with age, enabling adult phonology. Where appropriate, reference is made to findings from animal and clinical models. Some implications for future modeling and simulation efforts, as well as clinical settings, are also discussed.
Collapse
Affiliation(s)
- Axel G. Ekström
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
4
|
Claussenius-Kalman H, Hernandez AE, Li P. Expertise, ecosystem, and emergentism: Dynamic developmental bilingualism. BRAIN AND LANGUAGE 2021; 222:105013. [PMID: 34520977 DOI: 10.1016/j.bandl.2021.105013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Bilingual language representation and cognitive control effects may reflect the dynamic interactions among the complex learning environment, genotype of the individual, and developing cognitive abilities. In this paper we propose a framework considering such interactions. Specifically, we present a nonlinear, developmentally-oriented perspective in which each individual represents a developmental trajectory in multidimensional space. These trajectories focus on the cognitive ecosystem (and how said ecosystem changes over time) and individual expertise (which affects and is affected by the ecosystem). The interactions between ecosystem and expertise lead to the emergence of a system that is built to handle the communicative needs of the individual.
Collapse
Affiliation(s)
- Hannah Claussenius-Kalman
- Department of Psychology, The University of Houston, 4800 Calhoun Rd, Houston, TX 77004, United States.
| | - Arturo E Hernandez
- Department of Psychology, The University of Houston, 4800 Calhoun Rd, Houston, TX 77004, United States
| | - Ping Li
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
5
|
Vaughn KA, Watlington EM, Linares Abrego P, Tamber-Rosenau BJ, Hernandez AE. Prefrontal transcranial direct current stimulation (tDCS) has a domain-specific impact on bilingual language control. J Exp Psychol Gen 2021; 150:996-1007. [PMID: 33104382 PMCID: PMC9473447 DOI: 10.1037/xge0000956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Researchers debate whether domain-general cognitive control supports bilingual language control through brain regions such as the dorsolateral prefrontal cortex (DLPFC). Transcranial direct current stimulation (tDCS) is a method to alter brain activity, which can lead to causal attribution of task performance to regional brain activity. The current study examined whether the DLPFC enables domain-general control for between-language switching and nonlinguistic switching and whether the control enabled by DLPFC differs between bilinguals and monolinguals. tDCS was applied to the DLPFC of bilingual and monolingual young adults before they performed linguistic and nonlinguistic switching measures. For bilinguals, left DLPFC stimulation selectively worsened nonlinguistic switching, but not within-language switching. Left DLPFC stimulation also resulted in higher overall accuracy on bilingual picture-naming. These findings suggest that language control and cognitive control are distinct processes in relation to the left DLPFC. The left DLPFC may aid bilingual language control, but stimulating it does not benefit nonlinguistic control. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
6
|
Tao L, Wang G, Zhu M, Cai Q. Bilingualism and domain-general cognitive functions from a neural perspective: A systematic review. Neurosci Biobehav Rev 2021; 125:264-295. [PMID: 33631315 DOI: 10.1016/j.neubiorev.2021.02.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022]
Abstract
A large body of research has indicated that bilingualism - through continual practice in language control - may impact cognitive functions, as well as relevant aspects of brain function and structure. The present review aimed to bring together findings on the relationship between bilingualism and domain-general cognitive functions from a neural perspective. The final sample included 210 studies, covering findings regarding neural responses to bilingual language control and/or domain-general cognitive tasks, as well as findings regarding effects of bilingualism on non-task-related brain function and brain structure. The evidence indicates that a) bilingual language control likely entails neural mechanisms responsible for domain-general cognitive functions; b) bilingual experiences impact neural responses to domain-general cognitive functions; and c) bilingual experiences impact non-task-related brain function (both resting-state and metabolic function) as well as aspects of brain structure (both macrostructure and microstructure), each of which may in turn impact mental processes, including domain-general cognitive functions. Such functional and structural neuroplasticity associated with bilingualism may contribute to both cognitive and neural reserves, producing benefits across the lifespan.
Collapse
Affiliation(s)
- Lily Tao
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, China
| | - Gongting Wang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, China
| | - Miaomiao Zhu
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, China
| | - Qing Cai
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, China; Institute of Brain and Education Innovation, East China Normal University, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, China.
| |
Collapse
|
7
|
Del Maschio N, Sulpizio S, Abutalebi J. Thinking outside the box: The brain-bilingualism relationship in the light of early neurobiological variability. BRAIN AND LANGUAGE 2020; 211:104879. [PMID: 33080496 DOI: 10.1016/j.bandl.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Bilingualism represents a distinctive way to investigate the interplay between brain and behaviour, and an elegant model to study the role of environmental factors in shaping this relationship. Past neuroimaging research has mainly focused on how bilingualism influences brain structure, and how eventually the brain accommodates a second language. In this paper, we discuss a more recent contribution to the field which views bilingualism as lens to understand brain-behaviour mappings from a different perspective. It has been shown, in contexts not related to bilingualism, that cognitive performance across several domains can be predicted by neuroanatomical variants determined prenatally and largely impervious to postnatal changes. Here, we discuss novel findings indicating that bilingualism modulates the predictive role of these variants on domain-specific cognition. The repercussions of these findings are potentially far-reaching on multiple levels, and highlight the need to shape more complex questions for progress in cognitive neuroscience approaches to bilingualism.
Collapse
Affiliation(s)
- Nicola Del Maschio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy
| | - Simone Sulpizio
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy; Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Jubin Abutalebi
- Centre for Neurolinguistics and Psycholinguistics (CNPL), Faculty of Psychology, University Vita-Salute San Raffaele, Milano, Italy; The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
8
|
Teubner-Rhodes S. Cognitive Persistence and Executive Function in the Multilingual Brain During Aging. Front Psychol 2020; 11:568702. [PMID: 33013606 PMCID: PMC7494780 DOI: 10.3389/fpsyg.2020.568702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 11/14/2022] Open
Abstract
Researchers have debated the extent to which the experience of speaking more than two languages induces long-term neuroplasticity that protects multilinguals from the adverse cognitive effects of aging. In this review, I propose a novel theory that multilingualism affects cognitive persistence, the application of effort to improve performance on challenging tasks. I review recent evidence demonstrating that the cingulo-opercular network, consisting of the bilateral inferior frontal gyrus (IFG) and dorsal anterior cingulate cortex (dACC), supports cognitive persistence. I then show that this same network is involved in multilingual language control and changes with multilingual language experience. While both early and late multilinguals exhibit differences in the cingulo-opercular network compared to monolinguals, I find that early multilinguals have a pattern of decreased dACC activity and increased left IFG activity that may enable more efficient cognitive control, whereas late multilinguals show larger dACC responses to conflict that may be associated with higher cognitive persistence. I further demonstrate that multilingual effects on the cingulo-opercular network are present in older adults and have been implicated in the mitigation of cognitive symptoms in age-related neurodegenerative disorders. Finally, I argue that mixed results in the literature are due, in part, to the confound between cognitive persistence and ability in most executive function tasks, and I provide guidance for separating these processes in future research.
Collapse
Affiliation(s)
- Susan Teubner-Rhodes
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
9
|
Ma H, Bai J, Shen T, Lu G, Jia L. [Progresses in the understanding of bilingual switching mechanisms based on neuroimaging techniques]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1260-1264. [PMID: 31801704 DOI: 10.12122/j.issn.1673-4254.2019.10.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the field of bilingualism research, a key scientific question is how bilinguals process two language systems, particularly the effective switch from one language to another, namely bilingual code switching. With the rapid development of neuroimaging techniques, important progresses have been made in bilingual processing studies, especially in code switching. However, consensus has not been achieved regarding the mechanisms of bilingual code switching. Bilingual switching studies using neuropsychological and neuroimaging techniques have gained insights into the temporal and spatial features of the language switching process and the neurological mechanism, which provide direct evidence for the generation mechanism of bilingual code switching.
Collapse
Affiliation(s)
- Hengfen Ma
- School of Foreign Languages, Civil Aviation University of China, Tianjin 300300, China
| | - Jingting Bai
- School of Foreign Languages, Civil Aviation University of China, Tianjin 300300, China
| | - Tong Shen
- School of Foreign Languages, Civil Aviation University of China, Tianjin 300300, China
| | - Guohua Lu
- Department of Psychology, Weifang Medical University, Weifang 261053, China
| | - Liping Jia
- Department of Psychology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
10
|
Wu J, Yang J, Chen M, Li S, Zhang Z, Kang C, Ding G, Guo T. Brain network reconfiguration for language and domain-general cognitive control in bilinguals. Neuroimage 2019; 199:454-465. [DOI: 10.1016/j.neuroimage.2019.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022] Open
|
11
|
Altshuler DB, Wang L, Zhao L, Miklja Z, Linzey J, Brezzell A, Kakaizada S, Krishna S, Orringer DA, Briceño EM, Gabel N, Hervey-Jumper SL. BDNF, COMT, and DRD2 polymorphisms and ability to return to work in adult patients with low- and high-grade glioma. Neurooncol Pract 2019; 6:375-385. [PMID: 31555452 PMCID: PMC6753359 DOI: 10.1093/nop/npy059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cognitive and language dysfunction is common among patients with glioma and has a significant impact on survival and health-related quality of life (HRQOL). Little is known about the factors that make individual patients more or less susceptible to the cognitive sequelae of the disease. A better understanding of the individual and population characteristics related to cognitive function in glioma patients is required to appropriately stratify patients, prognosticate, and develop more efficacious treatment regimens. There is evidence that allelic variation among genes involved in neurotransmission and synaptic plasticity are related to neurocognitive performance in states of health and neurologic disease. METHODS We studied the association of single-nucleotide polymorphism variations in brain-derived neurotrophic factor (BDNF, rs6265), dopamine receptor 2 (DRD2, rs1076560), and catechol-O-methyltransferase (COMT, rs4680) with neurocognitive function and ability to return to work in glioma patients at diagnosis and at 3 months. We developed a functional score based on the number of high-performance alleles that correlates with the capacity for patients to return to work. RESULTS Patients with higher-performing alleles have better scores on neurocognitive testing with the Repeatable Battery for the Assessment of Neuropsychological Status and Stroop test, but not the Trail Making Test. CONCLUSIONS A better understanding of the genetic contributors to neurocognitive performance in glioma patients and capacity for functional recovery is necessary to develop improved treatment strategies based on patient-specific factors.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Zachary Miklja
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Joey Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Amanda Brezzell
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Sofia Kakaizada
- Department of Neurosurgery, University of California San Francisco, USA
| | - Saritha Krishna
- Department of Neurosurgery, University of California San Francisco, USA
| | - Daniel A Orringer
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, USA
| | - Emily M Briceño
- Department of Neurosurgery, Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, USA
| | - Nicolette Gabel
- Department of Neurosurgery, Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
- Department of Neurosurgery, University of California San Francisco, USA
| |
Collapse
|
12
|
van den Noort M, Struys E, Bosch P, Jaswetz L, Perriard B, Yeo S, Barisch P, Vermeire K, Lee SH, Lim S. Does the Bilingual Advantage in Cognitive Control Exist and If So, What Are Its Modulating Factors? A Systematic Review. Behav Sci (Basel) 2019; 9:E27. [PMID: 30871228 PMCID: PMC6466577 DOI: 10.3390/bs9030027] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/26/2022] Open
Abstract
Recently, doubts were raised about the existence of the bilingual advantage in cognitive control. The aim of the present review was to investigate the bilingual advantage and its modulating factors. We searched the Medline, ScienceDirect, Scopus, and ERIC databases for all original data and reviewed studies on bilingualism and cognitive control, with a cut-off date of 31 October 2018, thereby following the guidelines of the preferred reporting items for systematic reviews and meta-analysis (PRISMA) protocol. The results of the 46 original studies show that indeed, the majority, 54.3%, reported beneficial effects of bilingualism on cognitive control tasks; however, 28.3% found mixed results and 17.4% found evidence against its existence. Methodological differences seem to explain these mixed results: Particularly, the varying selection of the bilingual participants, the use of nonstandardized tests, and the fact that individual differences were often neglected and that longitudinal designs were rare. Therefore, a serious risk for bias exists in both directions (i.e., in favor of and against the bilingual advantage). To conclude, we found some evidence for a bilingual advantage in cognitive control; however, if significant progress is to be made, better study designs, bigger data, and more longitudinal studies are needed.
Collapse
Affiliation(s)
- Maurits van den Noort
- Research Group of Pain and Neuroscience, Kyung Hee University, Seoul 130-701, Korea.
- Brussels Institute for Applied Linguistics, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Esli Struys
- Brussels Institute for Applied Linguistics, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Peggy Bosch
- Psychiatric Research Group, LVR-Klinik Bedburg-Hau, 47511 Bedburg-Hau, Germany.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 Nijmegen, The Netherlands.
| | - Lars Jaswetz
- Behavioural Science Institute, Radboud University, 6525 Nijmegen, The Netherlands.
| | - Benoît Perriard
- Department of Medicine, Neurology, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Sujung Yeo
- College of Oriental Medicine, Sang Ji University, Wonju 26339, Korea.
| | - Pia Barisch
- Institute of Experimental Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Katrien Vermeire
- Department of Communication Sciences and Disorders, Long Island University (LIU) Brooklyn, Brooklyn, NY 11201, USA.
| | - Sook-Hyun Lee
- Research Group of Pain and Neuroscience, Kyung Hee University, Seoul 130-701, Korea.
| | - Sabina Lim
- Research Group of Pain and Neuroscience, Kyung Hee University, Seoul 130-701, Korea.
| |
Collapse
|
13
|
Schweiger JI, Bilek E, Schäfer A, Braun U, Moessnang C, Harneit A, Post P, Otto K, Romanczuk-Seiferth N, Erk S, Wackerhagen C, Mattheisen M, Mühleisen TW, Cichon S, Nöthen MM, Frank J, Witt SH, Rietschel M, Heinz A, Walter H, Meyer-Lindenberg A, Tost H. Effects of BDNF Val 66Met genotype and schizophrenia familial risk on a neural functional network for cognitive control in humans. Neuropsychopharmacology 2019; 44:590-597. [PMID: 30375508 PMCID: PMC6333795 DOI: 10.1038/s41386-018-0248-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022]
Abstract
Cognitive control represents an essential neuropsychological characteristic that allows for the rapid adaption of a changing environment by constant re-allocation of cognitive resources. This finely tuned mechanism is impaired in psychiatric disorders such as schizophrenia and contributes to cognitive deficits. Neuroimaging has highlighted the contribution of the anterior cingulate cortex (ACC) and prefrontal regions (PFC) on cognitive control and demonstrated the impact of genetic variation, as well as genetic liability for schizophrenia. In this study, we aimed to examine the influence of the functional single-nucleotide polymorphism (SNP) rs6265 of a plasticity-related neurotrophic factor gene, BDNF (Val66Met), on cognitive control. Strong evidence implicates BDNF Val66Met in neural plasticity in humans. Furthermore, several studies suggest that although the variant is not convincingly associated with schizophrenia risk, it seems to be a modifier of the clinical presentation and course of the disease. In order to clarify the underlying mechanisms using functional magnetic resonance imaging (fMRI), we studied the effects of this SNP on ACC and PFC activation, and the connectivity between these regions in a discovery sample of 85 healthy individuals and sought to replicate this effect in an independent sample of 253 individuals. Additionally, we tested the identified imaging phenotype in relation to schizophrenia familial risk in a sample of 58 unaffected first-degree relatives of schizophrenia patients. We found a significant increase in interregional connectivity between ACC and PFC in the risk-associated BDNF 66Met allele carriers. Furthermore, we replicated this effect in an independent sample and demonstrated its independence of structural confounds, as well as task specificity. A similar coupling increase was detectable in individuals with increased familial risk for schizophrenia. Our results show that a key neural circuit for cognitive control is influenced by a plasticity-related genetic variant, which may render this circuit particular susceptible to genetic and environmental risk factors for schizophrenia.
Collapse
Affiliation(s)
- J. I. Schweiger
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - E. Bilek
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A. Schäfer
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - U. Braun
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - C. Moessnang
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A. Harneit
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P. Post
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - K. Otto
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - N. Romanczuk-Seiferth
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - S. Erk
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - C. Wackerhagen
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - M. Mattheisen
- 0000 0001 1956 2722grid.7048.bDepartment of Biomedicine and Centre for Integrative Sequencing, iSEQ Aarhus University, Aarhus, Denmark ,grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - T. W. Mühleisen
- 0000 0001 2297 375Xgrid.8385.6Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany ,0000 0004 1937 0642grid.6612.3Department of Biomedicine, University of Basel, Basel, Switzerland
| | - S. Cichon
- 0000 0001 2297 375Xgrid.8385.6Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - M. M. Nöthen
- 0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, Bonn, 53127 Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, Bonn, 53127 Germany
| | - J. Frank
- 0000 0001 2190 4373grid.7700.0Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - S. H. Witt
- 0000 0001 2190 4373grid.7700.0Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - M. Rietschel
- 0000 0001 2190 4373grid.7700.0Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A. Heinz
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - H. Walter
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - A. Meyer-Lindenberg
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - H. Tost
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
14
|
Hernandez AE, Claussenius-Kalman HL, Ronderos J, Castilla-Earls AP, Sun L, Weiss SD, Young DR. Neuroemergentism: Response to Commentaries. JOURNAL OF NEUROLINGUISTICS 2019; 49:258-262. [PMID: 30983697 PMCID: PMC6457663 DOI: 10.1016/j.jneuroling.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
15
|
Hernandez AE, Claussenius-Kalman HL, Ronderos J, Castilla-Earls AP, Sun L, Weiss SD, Young DR. Neuroemergentism: A Framework for Studying Cognition and the Brain. JOURNAL OF NEUROLINGUISTICS 2019; 49:214-223. [PMID: 30636843 PMCID: PMC6326375 DOI: 10.1016/j.jneuroling.2017.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There has been virtual explosion of studies published in cognitive neuroscience primarily due to increased accessibility to neuroimaging methods, which has led to different approaches in interpretation. This review seeks to synthesize both developmental approaches and more recent views that consider neuroimaging. The ways in which Neuronal Recycling, Neural Reuse, and Language as Shaped by the Brain perspectives seek to clarify the brain bases of cognition will be addressed. Neuroconstructivism as an additional explanatory framework which seeks to bind brain and cognition to development will also be presented. Despite sharing similar goals, the four approaches to understanding how the brain is related to cognition have generally been considered separately. However, we propose that all four perspectives argue for a form of Emergentism in which combinations of smaller elements can lead to a greater whole. This discussion seeks to provide a synthesis of these approaches that leads to the emergence of a theory itself. We term this new synthesis Neurocomputational Emergentism (or Neuromergentism for short).
Collapse
|
16
|
Seo R, Stocco A, Prat CS. The bilingual language network: Differential involvement of anterior cingulate, basal ganglia and prefrontal cortex in preparation, monitoring, and execution. Neuroimage 2018; 174:44-56. [DOI: 10.1016/j.neuroimage.2018.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/12/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022] Open
|
17
|
Vaughn KA, Hernandez AE. Becoming a balanced, proficient bilingual: Predictions from age of acquisition & genetic background. JOURNAL OF NEUROLINGUISTICS 2018; 46:69-77. [PMID: 30038460 PMCID: PMC6054315 DOI: 10.1016/j.jneuroling.2017.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genetic variants related to dopamine functioning (e.g., the ANKK1/TaqIa polymorphism within the DRD2 gene and the Val158Met polymorphism within the COMT gene) have previously been shown to predict cognitive flexibility and learning (e.g., Colzato et al., 2010; Stelzel et al., 2010). Additionally, researchers have found that these genetic variants may also predict second language learning (Mamiya et al., 2016), although this relationship may change across the lifespan (Sugiura et al., 2011). The current study examined the role of the ANKK1/TaqIa and Val158Met polymorphisms along with age of second language acquisition (AoA) in order to predict levels of bilingual proficiency in Spanish-English bilinguals. Results indicated a three-way interaction such that the relationship between the genetic variants and bilingual proficiency depended on AoA. At earlier AoAs, having the genetic variant associated with higher levels of subcortical dopamine (A1+) predicted the highest levels of bilingual proficiency. At later AoAs, individuals with the genetic variant associated with cortical dopamine levels that are balanced between stability and flexibility (Val/Met) predicted the highest levels of bilingual proficiency. These results fit with theories about the development of language as a subcortical process early in life and as a cortical process later in life (Hernandez & Li, 2007), as well as the importance of both stability and flexibility in bilingual language development (Green & Abutalebi, 2013). Finally, this study raises questions about the direction of causality between bilingualism and cognitive control, which is central to the debate over the "bilingual advantage."
Collapse
|
18
|
Stocco A. A Biologically Plausible Action Selection System for Cognitive Architectures: Implications of Basal Ganglia Anatomy for Learning and Decision-Making Models. Cogn Sci 2017; 42:457-490. [PMID: 28585747 DOI: 10.1111/cogs.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 04/04/2017] [Accepted: 04/28/2017] [Indexed: 01/22/2023]
Abstract
Several attempts have been made previously to provide a biological grounding for cognitive architectures by relating their components to the computations of specific brain circuits. Often, the architecture's action selection system is identified with the basal ganglia. However, this identification overlooks one of the most important features of the basal ganglia-the existence of a direct and an indirect pathway that compete against each other. This characteristic has important consequences in decision-making tasks, which are brought to light by Parkinson's disease as well as genetic differences in dopamine receptors. This paper shows that a standard model of action selection in a cognitive architecture (ACT-R) cannot replicate any of these findings, details an alternative solution that reconciles action selection in the architecture with the physiology of the basal ganglia, and extends the domain of application of cognitive architectures. The implication of this solution for other architectures and existing models are discussed.
Collapse
Affiliation(s)
- Andrea Stocco
- Department of Psychology, University of Washington.,Institute for Learning and Brain Sciences (I-LABS), University of Washington.,NSF Center for Sensorimotor Neural Engineering, University of Washington.,University of Washington Institute for Neuroengineering (UWIN), University of Washington
| |
Collapse
|
19
|
Abstract
According to some estimates, more than half of the world's population is multilingual to some extent. Because of the centrality of language use to human experience and the deep connections between linguistic and nonlinguistic processing, it would not be surprising to find that there are interactions between bilingualism and cognitive and brain processes. The present review uses the framework of experience-dependent plasticity to evaluate the evidence for systematic modifications of brain and cognitive systems that can be attributed to bilingualism. The review describes studies investigating the relation between bilingualism and cognition in infants and children, younger and older adults, and patients, using both behavioral and neuroimaging methods. Excluded are studies whose outcomes focus primarily on linguistic abilities because of their more peripheral contribution to the central question regarding experience-dependent changes to cognition. Although most of the research discussed in the review reports some relation between bilingualism and cognitive or brain outcomes, several areas of research, notably behavioral studies with young adults, largely fail to show these effects. These discrepancies are discussed and considered in terms of methodological and conceptual issues. The final section proposes an account based on "executive attention" to explain the range of research findings and to set out an agenda for the next steps in this field. (PsycINFO Database Record
Collapse
|