1
|
Westerlund E, Marelsson SE, Karlsson M, Sjövall F, Chamkha I, Åsander Frostner E, Lundgren J, Fellman V, Eklund EA, Steding-Ehrenborg K, Darin N, Paul G, Hansson MJ, Ehinger JK, Elmér E. Correlation of mitochondrial respiration in platelets, peripheral blood mononuclear cells and muscle fibers. Heliyon 2024; 10:e26745. [PMID: 38439844 PMCID: PMC10909709 DOI: 10.1016/j.heliyon.2024.e26745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
There is a growing interest for the possibility of using peripheral blood cells (including platelets) as markers for mitochondrial function in less accessible tissues. Only a few studies have examined the correlation between respiration in blood and muscle tissue, with small sample sizes and conflicting results. This study investigated the correlation of mitochondrial respiration within and across tissues. Additional analyses were performed to elucidate which blood cell type would be most useful for assessing systemic mitochondrial function. There was a significant but weak within tissue correlation between platelets and peripheral blood mononuclear cells (PBMCs). Neither PBMCs nor platelet respiration correlated significantly with muscle respiration. Muscle fibers from a group of athletes had higher mass-specific respiration, due to higher mitochondrial content than non-athlete controls, but this finding was not replicated in either of the blood cell types. In a group of patients with primary mitochondrial diseases, there were significant differences in blood cell respiration compared to healthy controls, particularly in platelets. Platelet respiration generally correlated better with the citrate synthase activity of each sample, in comparison to PBMCs. In conclusion, this study does not support the theory that blood cells can be used as accurate biomarkers to detect minor alterations in muscle respiration. However, in some instances, pronounced mitochondrial abnormalities might be reflected across tissues and detectable in blood cells, with more promising findings for platelets than PBMCs.
Collapse
Affiliation(s)
- Emil Westerlund
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Emergency Department, Kungälv Hospital, Kungälv, Sweden
| | - Sigurður E. Marelsson
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Children's Medical Center, Landspitali-The National University Hospital of Iceland, Reykjavík, Iceland
| | | | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Intensive- and Perioperative Care, Skåne University Hospital, Malmö, Sweden
| | - Imen Chamkha
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Johan Lundgren
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Vineta Fellman
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Erik A. Eklund
- Department of Pediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Katarina Steding-Ehrenborg
- Clinical Physiology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Niklas Darin
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Gesine Paul
- Translational Neurology Group and Wallenberg Center for Molecular Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Magnus J. Hansson
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johannes K. Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
3
|
Emperador S, Vidal M, Hernández-Ainsa C, Ruiz-Ruiz C, Woods D, Morales-Becerra A, Arruga J, Artuch R, López-Gallardo E, Bayona-Bafaluy MP, Montoya J, Ruiz-Pesini E. The Decrease in Mitochondrial DNA Mutation Load Parallels Visual Recovery in a Leber Hereditary Optic Neuropathy Patient. Front Neurosci 2018; 12:61. [PMID: 29479304 PMCID: PMC5811516 DOI: 10.3389/fnins.2018.00061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/24/2018] [Indexed: 11/13/2022] Open
Abstract
The onset of Leber hereditary optic neuropathy is relatively rare in childhood and, interestingly, the rate of spontaneous visual recovery is very high in this group of patients. Here, we report a child harboring a rare pathological mitochondrial DNA mutation, present in heteroplasmy, associated with the disease. A patient follow-up showed a rapid recovery of the vision accompanied by a decrease of the percentage of mutated mtDNA. A retrospective study on the age of recovery of all childhood-onset Leber hereditary optic neuropathy patients reported in the literature suggested that this process was probably related with pubertal changes.
Collapse
Affiliation(s)
- Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Mariona Vidal
- Servicio de Oftalmología Pediátrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Cristina Ruiz-Ruiz
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Woods
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Morales-Becerra
- Servicio de Oftalmología Pediátrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jorge Arruga
- Servicio de Oftalmología, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Servicio de Bioquímica, Hospital Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Fundación ARAID, Zaragoza, Spain
| |
Collapse
|
4
|
Hairy matters: MtDNA quantity and sequence variation along and among human head hairs. Forensic Sci Int Genet 2016; 25:1-9. [PMID: 27484846 DOI: 10.1016/j.fsigen.2016.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 01/31/2023]
Abstract
Hairs from the same donor have been found to differ in mtDNA sequence within and among themselves and from other tissues, which impacts interpretation of results obtained in a forensic setting. However, little is known on the magnitude of this phenomenon and published data on systematic studies are scarce. We addressed this issue by generating mtDNA control region (CR) profiles of >450 hair fragments from 21 donors by Sanger-type sequencing (STS). To mirror forensic scenarios, we compared hair haplotypes from the same donors to each other, to the corresponding buccal swab reference haplotypes and analyzed several fragments of individual hairs. We also investigated the effects of hair color, donor sex and age, mtDNA haplogroup and chemical treatment on mtDNA quantity, amplification success and variation. We observed a wide range of individual CR sequence variation. The reference haplotype was the only or most common (≥75%) hair haplotype for most donors. However, in two individuals, the reference haplotype was only found in about a third of the investigated hairs, mainly due to differences at highly variable positions. Similarly, most hairs revealed the reference haplotype along their entire length, however, about a fifth of the hairs contained up to 71% of segments with deviant haplotypes, independent of the longitudinal position. Variation affected numerous positions, typically restricted to the individual hair and in most cases heteroplasmic, but also fixed (i.e. homoplasmic) substitutions were observed. While existing forensic mtDNA interpretation guidelines were found still sufficient for all comparisons to reference haplotypes, some comparisons between hairs from the same donor could yield false exclusions when those guidelines are strictly followed. This study pinpoints the special care required when interpreting mtDNA results from hair in forensic casework.
Collapse
|
5
|
Wilson IJ, Carling PJ, Alston CL, Floros VI, Pyle A, Hudson G, Sallevelt SCEH, Lamperti C, Carelli V, Bindoff LA, Samuels DC, Wonnapinij P, Zeviani M, Taylor RW, Smeets HJM, Horvath R, Chinnery PF. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Hum Mol Genet 2016; 25:1031-41. [PMID: 26740552 PMCID: PMC4754047 DOI: 10.1093/hmg/ddv626] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/22/2015] [Indexed: 01/03/2023] Open
Abstract
With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother–child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations.
Collapse
Affiliation(s)
| | - Phillipa J Carling
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research and
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Vasileios I Floros
- Medical Research Council Mitochondrial Biology Unit, Cambridge, UK, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Angela Pyle
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research and
| | - Gavin Hudson
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research and
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Research Schools GROW/CARIM, Maastricht University Medical Center, Maastricht, Netherlands
| | - Costanza Lamperti
- Division of Molecular Neurogenetics, National Neurological Institute 'C. Besta', Milano, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy, Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Laurence A Bindoff
- Department of Neurology, Haukeland University Hospital, Bergen, Norway, Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - David C Samuels
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, TN, USA and
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Massimo Zeviani
- Medical Research Council Mitochondrial Biology Unit, Cambridge, UK, Division of Molecular Neurogenetics, National Neurological Institute 'C. Besta', Milano, Italy
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Hubert J M Smeets
- Department of Clinical Genetics, Research Schools GROW/CARIM, Maastricht University Medical Center, Maastricht, Netherlands
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research and
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research and Medical Research Council Mitochondrial Biology Unit, Cambridge, UK, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK,
| |
Collapse
|
6
|
Calatayud M, Ramos A, Santos C, Aluja MP. Primer effect in the detection of mitochondrial DNA point heteroplasmy by automated sequencing. ACTA ACUST UNITED AC 2013; 24:303-11. [PMID: 23350969 DOI: 10.3109/19401736.2012.760072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The correct detection of mitochondrial DNA (mtDNA) heteroplasmy by automated sequencing presents methodological constraints. The main goals of this study are to investigate the effect of sense and distance of primers in heteroplasmy detection and to test if there are differences in the accurate determination of heteroplasmy involving transitions or transversions. A gradient of the heteroplasmy levels was generated for mtDNA positions 9477 (transition G/A) and 15,452 (transversion C/A). Amplification and subsequent sequencing with forward and reverse primers, situated at 550 and 150 bp from the heteroplasmic positions, were performed. Our data provide evidence that there is a significant difference between the use of forward and reverse primers. The forward primer is the primer that seems to give a better approximation to the real proportion of the variants. No significant differences were found concerning the distance at which the sequencing primers were placed neither between the analysis of transitions and transversions. The data collected in this study are a starting point that allows to glimpse the importance of the sequencing primers in the accurate detection of point heteroplasmy, providing additional insight into the overall automated sequencing strategy.
Collapse
Affiliation(s)
- Marta Calatayud
- Unitat d'Antropologia Biològica, Departament BABVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
7
|
Samuels DC, Wonnapinij P, Chinnery PF. Preventing the transmission of pathogenic mitochondrial DNA mutations: Can we achieve long-term benefits from germ-line gene transfer? Hum Reprod 2013; 28:554-9. [PMID: 23297368 PMCID: PMC3571501 DOI: 10.1093/humrep/des439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mitochondrial medicine is one of the few areas of genetic disease where germ-line transfer is being actively pursued as a treatment option. All of the germ-line transfer methods currently under development involve some carry-over of the maternal mitochondrial DNA (mtDNA) heteroplasmy, potentially delivering the pathogenic mutation to the offspring. Rapid changes in mtDNA heteroplasmy have been observed within a single generation, and so any ‘leakage’ of mutant mtDNA could lead to mtDNA disease in future generations, compromising the reproductive health of the first generation, and leading to repeated interventions in subsequent generations. To determine whether this is a real concern, we developed a model of mtDNA heteroplasmy inheritance by studying 87 mother–child pairs, and predicted the likely outcome of different levels of ‘mutant mtDNA leakage’ on subsequent maternal generations. This showed that, for a clinical threshold of 60%, reducing the proportion of mutant mtDNA to <5% dramatically reduces the chance of disease recurrence in subsequent generations, but transmitting >5% mutant mtDNA was associated with a significant chance of disease recurrence. Mutations with a lower clinical threshold were associated with a higher risk of recurrence. Our findings provide reassurance that, at least from an mtDNA perspective, methods currently under development have the potential to effectively eradicate pathogenic mtDNA mutations from subsequent generations.
Collapse
Affiliation(s)
- David C Samuels
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | |
Collapse
|
8
|
Wonnapinij P, Chinnery PF, Samuels DC. Previous estimates of mitochondrial DNA mutation level variance did not account for sampling error: comparing the mtDNA genetic bottleneck in mice and humans. Am J Hum Genet 2010; 86:540-50. [PMID: 20362273 DOI: 10.1016/j.ajhg.2010.02.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/16/2010] [Accepted: 02/23/2010] [Indexed: 12/12/2022] Open
Abstract
In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference.
Collapse
Affiliation(s)
- Passorn Wonnapinij
- Center of Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
9
|
Yu D, Jia X, Zhang AM, Guo X, Zhang YP, Zhang Q, Yao YG. Molecular characterization of six Chinese families with m.3460G>A and Leber hereditary optic neuropathy. Neurogenetics 2010; 11:349-56. [DOI: 10.1007/s10048-010-0236-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/15/2010] [Indexed: 12/19/2022]
|
10
|
Uusimaa J, Moilanen JS, Vainionpää L, Tapanainen P, Lindholm P, Nuutinen M, Löppönen T, Mäki-Torkko E, Rantala H, Majamaa K. Prevalence, segregation, and phenotype of the mitochondrial DNA 3243A>G mutation in children. Ann Neurol 2007; 62:278-87. [PMID: 17823937 DOI: 10.1002/ana.21196] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We studied the prevalence, segregation, and phenotype of the mitochondrial DNA 3243A>G mutation in children in a defined population in Northern Ostrobothnia, Finland. METHODS Children with diagnoses commonly associated with mitochondrial diseases were ascertained. Blood DNA from 522 selected children was analyzed for 3243A>G. Children with the mutation were clinically examined. Information on health history before the age of 18 years was collected from previously identified adult patients with 3243A>G. Mutation segregation analysis in buccal epithelial cells was performed in mothers with 3243A>G and their children whose samples were analyzed anonymously. RESULTS Eighteen children were found to harbor 3243A>G in a population of 97,609. A minimum estimate for the prevalence of 3243A>G was 18.4 in 100,000 (95% confidence interval, 10.9-29.1/100,000). Information on health in childhood was obtained from 37 adult patients with 3243A>G. The first clinical manifestations appearing in childhood were sensorineural hearing impairment, short stature or delayed maturation, migraine, learning difficulties, and exercise intolerance. Mutation analysis from 13 mothers with 3243A>G and their 41 children gave a segregation rate of 0.80. The mothers with heteroplasmy greater than 50% tended to have offspring with lower or equal heteroplasmy, whereas the opposite was true for mothers with heteroplasmy less than or equal to 50% (p = 0.0016). INTERPRETATION The prevalence of 3243A>G is relatively high in the pediatric population, but the morbidity in children is relatively low. The random genetic drift model may be inappropriate for the transmission of the 3243A>G mutation.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Department of Paediatrics, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Q, Boles RG. Individual human hair mitochondrial DNA control region heteroplasmy proportions in mothers and children. Mitochondrion 2006; 6:37-42. [PMID: 16412703 DOI: 10.1016/j.mito.2005.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 11/30/2005] [Indexed: 11/23/2022]
Abstract
Due to maternal inheritance, lack of recombination and a high polymorphic density, the mtDNA control region hypervariable (HV) regions are well suited for forensic identification using a maternal relative as the known sample. This analysis can be performed in hair, however, heteroplasmy in this tissue is not rare and can result in an apparent sequence mismatch that complicates this application. There is little data comparing mother and child mtDNA-CR heteroplasmic proportions in hair. In this study, we assayed four hairs per individual in 26 mother-child pairs by TTGE for heteroplasmy across HV1. Single nucleotide heteroplasmy was detected in seven families, and in four families at least two hairs were heteroplasmic. In each of the latter families, sequencing and PCR-RFLP confirmed single nucleotide heteroplasmy in proportions of the variant ranging from < or =10 to > or =90% in the mothers, with far less variability in their children. Sequencing alone would have revealed apparent homoplasmic differences at one nucleotide in these families, possibly resulting in an 'inconclusive' verdict for relatedness of child and mother. However, mother-child heteroplasmic variability did not exceed intra-individual variability in the mothers alone.
Collapse
Affiliation(s)
- Qingxue Wang
- Division of Medical Genetics, The Saban Research Institute, Childrens Hospital Los Angeles, Box 90, Los Angeles, CA 90027, USA
| | | |
Collapse
|
12
|
|