1
|
Kyritsi K, Chen L, O’Brien A, Francis H, Hein TW, Venter J, Wu N, Ceci L, Zhou T, Zawieja D, Gashev AA, Meng F, Invernizzi P, Fabris L, Wu C, Skill NJ, Saxena R, Liangpunsakul S, Alpini G, Glaser SS. Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidase-A/5-Hydroxytryptamine/5-Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis. Hepatology 2020; 71:990-1008. [PMID: 31344280 PMCID: PMC6993623 DOI: 10.1002/hep.30880] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Serotonin (5HT) is a neuroendocrine hormone synthetized in the central nervous system (CNS) as well as enterochromaffin cells of the gastrointestinal tract. Tryptophan hydroxylase (TPH1) and monoamine oxidase (MAO-A) are the key enzymes for the synthesis and catabolism of 5HT, respectively. Previous studies demonstrated that 5-hydroxytryptamine receptor (5HTR)1A/1B receptor agonists inhibit biliary hyperplasia in bile-duct ligated (BDL) rats, whereas 5HTR2B receptor antagonists attenuate liver fibrosis (LF) in mice. Our aim was to evaluate the role of 5HTR2A/2B/2C agonists/antagonists in cholestatic models. APPROACH AND RESULTS While in vivo studies were performed in BDL rats and the multidrug resistance gene 2 knockout (Mdr2-/- ) mouse model of PSC, in vitro studies were performed in cell lines of cholangiocytes and hepatic stellate cells (HSCs). 5HTR2A/2B/2C and MAO-A/TPH1 are expressed in cholangiocytes and HSCs from BDL rats and Mdr2-/- - mice. Ductular reaction, LF, as well as the mRNA expression of proinflammatory genes increased in normal, BDL rats, and Mdr2-/- - mice following treatment 5HTR2A/2B/2C agonists, but decreased when BDL rats and Mdr2-/- mice were treated with 5HTR2A/2B/2C antagonists compared to BDL rats and Mdr2-/- mice, respectively. 5HT levels increase in Mdr2-/- mice and in PSC human patients compared to their controls and decrease in serum of Mdr2-/- mice treated with 5HTR2A/2B/2C antagonists compared to untreated Mdr2-/- mice. In vitro, cell lines of murine cholangiocytes and human HSCs express 5HTR2A/2B/2C and MAO-A/TPH1; treatment of these cell lines with 5HTR2A/2B/2C antagonists or TPH1 inhibitor decreased 5HT levels as well as expression of fibrosis and inflammation genes compared to controls. CONCLUSIONS Modulation of the TPH1/MAO-A/5HT/5HTR2A/2B/2C axis may represent a therapeutic approach for management of cholangiopathies, including PSC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/physiology
- Animals
- Bile Ducts/pathology
- Cell Proliferation
- Cholangitis, Sclerosing/etiology
- Cholestasis/pathology
- Humans
- Liver Cirrhosis/etiology
- Male
- Mice
- Monoamine Oxidase/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A/physiology
- Receptor, Serotonin, 5-HT2B/physiology
- Receptor, Serotonin, 5-HT2C/physiology
- Receptors, Serotonin/physiology
- Serotonin/blood
- Serotonin/physiology
- Tryptophan Hydroxylase/physiology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lixian Chen
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - April O’Brien
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Travis W. Hein
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Julie Venter
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - David Zawieja
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Anatoliy A. Gashev
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Rozzano (MI), Italy
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, CA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Nicholas J. Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Indiana University School of Medicine, Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Shannon S. Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| |
Collapse
|
4
|
Svejda B, Kidd M, Timberlake A, Harry K, Kazberouk A, Schimmack S, Lawrence B, Pfragner R, Modlin IM. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors. Cancer Sci 2013; 104:844-55. [PMID: 23578138 DOI: 10.1111/cas.12174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT₇ receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT₇ receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT₇ expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT₇ receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT₇ receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC₅₀: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT₇ was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT₇ receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT₇ in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors.
Collapse
Affiliation(s)
- Bernhard Svejda
- Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Akash KG, Balarama KS, Paulose CS. Enhanced 5-HT(2A) receptor status in the hypothalamus and corpus striatum of ethanol-treated rats. Cell Mol Neurobiol 2008; 28:1017-25. [PMID: 18425575 DOI: 10.1007/s10571-008-9281-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
AIM Brain is the major target for the actions of ethanol and it can affect the brain in a variety of ways. In the present study we have investigated the changes in 5-HT level and the 5-HT(2A) receptors in the ethanol-treated rats. METHODS Wistar adult male rats of 180-200 g body weight were given free access to 15% (v/v) (approx.7.5 g/Kg body wt./day) ethanol for 15 days. Controls were given free access to water for 15 days. Brain 5-HT and its metabolites were assayed by high performance liquid chromatography (HPLC) integrated with an electrochemical detector (ECD) fitted with C-18-CLS-ODS reverse phase column. 5-HT(2A) receptor binding assay was done with different concentrations of [3H] MDL 100907. RESULTS The hypothalamic 5-HT content significantly increased (P < 0.001) with a decreased (P < 0.001) 5-HIAA/5-HT turnover in the ethanol-treated rats when compared to control. The corpus striatum 5-HT content significantly decreased (P < 0.01) with increased (P < 0.01) 5-HIAA/5- HT turnovers in the ethanol-treated rats when compared to control. Scatchard analysis of [(3)H] MDL 100907 against ketanserin in hypothalamus showed a significant increase (P < 0.001) in B(max )with a decreased affinity (P < 0.001) in ethanol-treated rats when compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. An increased K(i) and log (EC(50)) value were also observed in ethanol-treated rats when compared to control. Scatchard analysis of [3H] MDL 100907 against ketanserin in the corpus striatum of ethanol-treated rats showed a significant increase (P < 0.001) in B(max) and in affinity (P < 0.01) when compared to control. The change in affinity of the receptor protein in both corpus striatum and hypothalamus shows an altered receptor. The competition curve for [(3)H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. There was no significant change in K(i) and log (EC (50)) value in ethanol-treated rats when compared to control. CONCLUSION The present study demonstrated the enhanced 5-HT(2A) receptor status in hypothalamus and corpus striatum. The ethanol-induced enhanced 5-HT(2A) receptors in the hypothalamus and corpus striatum has clinical significance in the better management of ethanol addiction. This will have therapeutic application.
Collapse
Affiliation(s)
- K G Akash
- Molecular neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala, India
| | | | | |
Collapse
|
6
|
Gamma-aminobutyric acid A receptor functional decrease in the hypothalamus during pancreatic regeneration in rats. Pancreas 2008; 37:e20-30. [PMID: 18580435 DOI: 10.1097/mpa.0b013e3181661af4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE In the present study, we investigated the alteration of gamma-aminobutyric acid A (GABAA) receptors in the hypothalamus of rats during pancreatic regeneration. METHODS Three groups of rats were used for the study: sham operated, 72 hours partially pancreatectomized, and 7 days partially pancreatectomized. The GABA receptor assay was performed by using the [H]GABA as ligand to the Triton X-100-treated membranes, and displacement with unlabeled GABA and [H]bicuculline binding to the GABAA receptors was assayed in Triton X-100-treated synaptic membranes and displacement with unlabeled bicuculline. RESULTS The GABA content in the brain regions and pancreas of the sham and experimental rat groups was quantified by displacement method. In the hypothalamus, the high-affinity GABAA receptor binding showed a significant decrease in maximal binding (P < 0.01) and equilibrium dissociation constant (P < 0.05) in 72 hours and 7 days partially pancreatectomized rats. The content of GABA has significantly decreased in the hypothalamus during the regeneration of pancreas. CONCLUSIONS This effect of GABAA receptors in hypothalamus suggests a regulatory role during active regeneration of pancreas that will have significance in insulin secretion.
Collapse
|
7
|
Jungwirth N, Haeberle L, Schrott KM, Wullich B, Krause FS. Serotonin used as prognostic marker of urological tumors. World J Urol 2008; 26:499-504. [PMID: 18581119 DOI: 10.1007/s00345-008-0285-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 05/23/2008] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION In regard to therapy and prognosis of urological tumors, specific tumor markers are lacking especially in renal and urinary bladder carcinoma. Our study examines the relevance of serum serotonin levels to urinary bladder, prostate, renal, and testicular carcinoma when it comes to prognosis and occurrence of these oncological conditions. MATERIALS AND METHODS Serotonin levels were obtained in 109 patients presenting with urothelial carcinoma to the urinary bladder, adenocarcinoma of the prostate and renal cell carcinoma, as well as presenting with seminomatous and non-seminomatous testicular tumors. All of these conditions varied in grades and metastases. Serum levels were drawn between 7 and 8 a.m. exclusively in order to avoid circadian changes. RESULTS Serotonin levels in urothelial carcinoma appeared within pathological range in correlation with tumor stage, life expectancy, and statistical significant with distant metastases. In prostate carcinoma, serotonin levels showed a tendency with organ exceeding growth, Grading/Gleason Score, PSA values >100 ng/ml, and the presence of distant metastases. In renal cell carcinoma, serotonin levels were decreased in patients with lymph node and distant metastases; there was no significant correlation with extent of infiltration. In regard to testicular carcinoma, decreased serotonin levels were merely noted in mixed tumors and the one extragonadal seminoma. Otherwise there was no correlation observed with stage and grade as well as with common tumor markers (AFP/betaHCG). CONCLUSION Serotonin levels are suitable for prognostic evaluation of urothelial carcinoma in the urinary bladder, adenocarcinoma of the prostate, and renal cell carcinoma, especially taking into account the lab cost of 25<euro> per test.
Collapse
Affiliation(s)
- Nina Jungwirth
- Depatment of Urology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
10
|
George AK, Balarama Kaimal S, Paulose CS. Decreased dopamine D(2) receptor function in cerebral cortex and brain stem: their role in hepatic ALDH regulation in ethanol treated rats. Mol Cell Biochem 2007; 304:181-8. [PMID: 17530188 DOI: 10.1007/s11010-007-9498-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
Ethanol exerts numerous pharmacological effects through its interaction with various neurotransmitters. The dopaminergic pathway is associated with cognitive, endocrine, and motor functions, and reinforcement of addictive substances or behaviours. Aldehyde dehydrogenase (ALDH) is a vital enzyme involved with alcohol metabolism and detoxification. In the present study, we investigated the role of cerebral cortex and brain stem dopamine D(2) receptors in the functional regulation on ALDH enzyme activity, in ethanol administrated rats. Two groups of rats were selected viz. control and alcoholic. Cerebral cortex, brain stem and the liver dopamine content was decreased significantly (P < 0.05, 0.05, 0.001, respectively) and homovanillic acid/dopamine (HVA/DA) ratio has significantly increased (P < 0.05, 0.001 and 0.001), respectively in ethanol treated rats when compared to control. Scatchard analysis of [(3)H]YM-09151-2 binding to synaptic membrane preparations of cerebral cortex and brain stem showed a significant decrease (P < 0.001, 0.05, respectively) in B (max) in ethanol treated rats compared to control and the K (d) also decreased significantly (P < 0.05). The ALDH analysis showed a significant increase (P < 0.05) in V (max) in cerebral cortex, plasma and liver of experimental rats when compared with control without having significant change in brain stem but with decreased K (m) (P < 0.001). Our results suggest that decreased function of dopamine mediated through DA D(2) receptor in the cerebral cortex and brain stem enhanced the brain, plasma and liver ALDH activity in ethanol treated rats. This ALDH regulation has significance to correct alcoholics from addiction due to allergic reaction observed in aldehyde accumulation.
Collapse
Affiliation(s)
- Akash K George
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala, India
| | | | | |
Collapse
|