1
|
Correa-Arrieta C, Castellar-Leones S, Forero Diaz JJ, Peña-Preciado M, Ortiz-Corredor F. Slowly progressing Amyotrophic lateral sclerosis associated with the F21L variant in the SOD1 gene: Demographic and clinical characteristics. Amyotroph Lateral Scler Frontotemporal Degener 2024:1-4. [PMID: 39431590 DOI: 10.1080/21678421.2024.2416669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION/OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which genetic variants can significantly influence clinical presentation and prognosis. This study aims to describe the demographic and clinical characteristics of ALS patients carrying the SOD1: c.63C > G (p.Phe21Leu) [NM_000454.4] variant, as treated at a national reference center in Colombia. METHODS A descriptive study was conducted on patients identified with the SOD1: c.63C > G (p.Phe21Leu) [NM_000454.4] variant, selected from the database of a neuromuscular disease center in Colombia. Demographic and clinical data were collected through medical records and patient interviews. Molecular analysis was performed using PCR and automated sequencing to confirm the presence of the variant. RESULTS Eleven patients with SOD1: c.63C > G (p.Phe21Leu) [NM_000454.4] variant were identified. The mean age at onset was 48.4 years, with a mean disease duration of 76.7 months. The majority (90.9%) exhibited a slowly progressive course, predominantly with spinal onset and no cognitive impairment. Bulbar symptoms developed in 72.2% of the patients, and 81.8% required noninvasive ventilation. A family history of ALS or other neurodegenerative disorders was present in 54.5% of the patients. CONCLUSIONS The SOD1: c.63C > G (p.Phe21Leu) [NM_000454.4] variant is associated with a slowly progressive ALS phenotype, characterized by predominant lower motor neuron involvement and delayed onset of bulbar and respiratory symptoms. This variant appears to be predominantly distributed in central Colombia. Early detection of this variant may enable timely interventions and personalized care plans. Further research is required to establish a definitive causal relationship between this variant and the observed clinical course.
Collapse
Affiliation(s)
| | - Sandra Castellar-Leones
- Physical Medicine and Rehabilitation, Neuromuscular diseases Center, Instituto Roosevelt, Bogotá, Colombia, and
- Physical Medicine and Rehabilitation, Universidad Nacional de Colombia, Bogotá, Colombia
| | - John Jairo Forero Diaz
- Physical Medicine and Rehabilitation, Neuromuscular diseases Center, Instituto Roosevelt, Bogotá, Colombia, and
| | | | - Fernando Ortiz-Corredor
- Physical Medicine and Rehabilitation, Neuromuscular diseases Center, Instituto Roosevelt, Bogotá, Colombia, and
- Physical Medicine and Rehabilitation, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Gagliardi D, Ripellino P, Meneri M, Del Bo R, Antognozzi S, Comi GP, Gobbi C, Ratti A, Ticozzi N, Silani V, Ronchi D, Corti S. Clinical and molecular features of patients with amyotrophic lateral sclerosis and SOD1 mutations: a monocentric study. Front Neurol 2023; 14:1169689. [PMID: 37265463 PMCID: PMC10230028 DOI: 10.3389/fneur.2023.1169689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction SOD1 was the first gene associated with both familial and sporadic forms of amyotrophic lateral sclerosis (ALS) and is the second most mutated gene in Caucasian ALS patients. Given their high clinical and molecular heterogeneity, a detailed characterization of SOD1-ALS patients could improve knowledge about the natural history of this disease. Here, the authors aimed to provide a clinical and molecular description of a monocentric cohort of SOD1-ALS patients. Methods Amyotrophic lateral sclerosis (ALS) patients referring to the neurology unit of our center between 2008 and 2021 were clinically assessed and underwent molecular testing for SOD1. Segregation studies in available family members and in silico analysis were performed to sustain the pathogenicity of the identified SOD1 variants. Results Among the 576 patients in our cohort, we identified 19 individuals harboring a mutation in SOD1 (3.3%), including 15 (78.9%) with a familial and four (21.1%) with a sporadic form. The spinal onset of the disease was observed in all patients, and survival was extremely variable, ranging from 8 months to over 30 years. Twelve different SOD1 missense variants were identified in our cohort, including one novel mutation (p.Pro67Leu). Discussion In the present series, we provided the first description of an Italian monocentric cohort of SOD1-ALS patients, and we expanded the repertoire of SOD1 mutations. Our cohort presents several remarkable features, including variable expressivity in the same family, atypical presentation (ataxia, cognitive impairment, and other extra-motor symptoms), and different modes of inheritance of a given mutation in the same family. Given the recent authorization of SOD1-directed antisense oligonucleotide for use in SOD1-ALS patients, we recommend prompt screening for SOD1 mutations in novel ALS patients with familiar or sporadic presentations.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Ripellino
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Lugano, Switzerland
| | - Megi Meneri
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Sara Antognozzi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudio Gobbi
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Dario Ronchi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Rossor AM. Broadening the genetic spectrum of distal hereditary motor neuropathy. Eur J Neurol 2021; 28:1104-1105. [PMID: 33449405 DOI: 10.1111/ene.14734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander M Rossor
- Queen Square Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
4
|
Frasquet M, Rojas-García R, Argente-Escrig H, Vázquez-Costa JF, Muelas N, Vílchez JJ, Sivera R, Millet E, Barreiro M, Díaz-Manera J, Turon-Sans J, Cortés-Vicente E, Querol L, Ramírez-Jiménez L, Martínez-Rubio D, Sánchez-Monteagudo A, Espinós C, Sevilla T, Lupo V. Distal hereditary motor neuropathies: Mutation spectrum and genotype-phenotype correlation. Eur J Neurol 2021; 28:1334-1343. [PMID: 33369814 DOI: 10.1111/ene.14700] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/28/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of disorders characterized by degeneration of the motor component of peripheral nerves. Currently, only 15% to 32.5% of patients with dHMN are characterized genetically. Additionally, the prevalence of these genetic disorders is not well known. Recently, biallelic mutations in the sorbitol dehydrogenase gene (SORD) have been identified as a cause of dHMN, with an estimated frequency in undiagnosed cases of up to 10%. METHODS In the present study, we included 163 patients belonging to 108 different families who were diagnosed with a dHMN and who underwent a thorough genetic screening that included next-generation sequencing and subsequent Sanger sequencing of SORD. RESULTS Most probands were sporadic cases (62.3%), and the most frequent age of onset of symptoms was 2 to 10 years (28.8%). A genetic diagnosis was achieved in 37/108 (34.2%) families and 78/163 (47.8%) of all patients. The most frequent cause of distal hereditary motor neuropathies were mutations in HSPB1 (10.4%), GARS1 (9.8%), BICD2 (8.0%), and DNAJB2 (6.7%) genes. In addition, 3.1% of patients were found to be carriers of biallelic mutations in SORD. Mutations in another seven genes were also identified, although they were much less frequent. Eight new pathogenic mutations were detected, and 17 patients without a definite genetic diagnosis carried variants of uncertain significance. The calculated minimum prevalence of dHMN was 2.3 per 100,000 individuals. CONCLUSIONS This study confirms the genetic heterogeneity of dHMN and that biallelic SORD mutations are a cause of dHMN in different populations.
Collapse
Affiliation(s)
- Marina Frasquet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Ricard Rojas-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Herminia Argente-Escrig
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Nuria Muelas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Juan Jesús Vílchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Rafael Sivera
- Department of Neurology, Hospital Francesc de Borja, Gandía, Spain
| | - Elvira Millet
- Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Marisa Barreiro
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jordi Díaz-Manera
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Janina Turon-Sans
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Cortés-Vicente
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Querol
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ramírez-Jiménez
- Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Dolores Martínez-Rubio
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Ana Sánchez-Monteagudo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Units, INCLIVA and IIS La Fe-CIPF, Valencia, Spain
| |
Collapse
|
5
|
Garcia C, Vidal-Taboada JM, Syriani E, Salvado M, Morales M, Gamez J. Haplotype Analysis of the First A4V- SOD1 Spanish Family: Two Separate Founders or a Single Common Founder? Front Genet 2019; 10:1109. [PMID: 31781168 PMCID: PMC6857184 DOI: 10.3389/fgene.2019.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/16/2019] [Indexed: 12/02/2022] Open
Abstract
Despite the genetic heterogeneity reported in familial amyotrophic lateral sclerosis (ALS) (fALS), Cu/Zn superoxide-dismutase (SOD1) gene mutations are the second most common cause of the disease, accounting for around 20% of all families (ALS1) and isolated sporadic cases (sALS). At least 186 different mutations in the SOD1 gene have been reported to date. The possibility of a single founder and separate founders have been investigated for D90A (p.D91A) and A4V (p.A5V), the most common mutations worldwide. High-throughput single nucleotide polymorphism genotyping studies have suggested two founders for A4V (one for the Amerindian population and another for the European population) although the possibility that the two populations are descended from a single ancient founder cannot be ruled out. We used 15 genetic variants spanning the human chromosome 21 from the SOD1 gene to the SCAF4 gene, comparing them with the population reference panels, to demonstrate that the first A4V Spanish pedigree shared the genetic background reported in the European population.
Collapse
Affiliation(s)
- Cecilia Garcia
- ALS Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | - Jose Manuel Vidal-Taboada
- ALS Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | - Enrique Syriani
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | - Maria Salvado
- ALS Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Miguel Morales
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | - Josep Gamez
- ALS Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
6
|
Taieb G, Polge A, Juntas-Morales R, Pageot N, Lumbroso S, Mouzat K, Camu W. Slowly progressive motor neuron disease with multi-system involvement related to p.E121G SOD1 mutation. Amyotroph Lateral Scler Frontotemporal Degener 2016; 18:296-297. [PMID: 27892702 DOI: 10.1080/21678421.2016.1255756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We report the third case of amyotrophic lateral sclerosis related to p.E121G Superoxide dismutase-1 (SOD1) mutation. Besides a sporadic presentation and a slow progressive course, as described in the 2 previously cases, our patient presented with prominent sensory and cerebellar signs. This case report strengthens that p.E121G should be considered as a causal mutation. Slowly upper and lower motor neuron degeneration, even with non-motor clinical features, should prompt a sequencing of SOD1.
Collapse
Affiliation(s)
- Guillaume Taieb
- a Department of Neurology , CHU Montpellier, Hopital Guy de Chauliac , 80 avenue Augustin Fliche , 34295 Montpellier Cedex 5 , France and
| | - Anne Polge
- b Department of Biochemistry and Molecular Biology , CHU Nîmes, Hôpital Caremeau , Place du Pr Debré , 30029 Nîmes Cedex 4 , France
| | - Raul Juntas-Morales
- a Department of Neurology , CHU Montpellier, Hopital Guy de Chauliac , 80 avenue Augustin Fliche , 34295 Montpellier Cedex 5 , France and
| | - Nicolas Pageot
- a Department of Neurology , CHU Montpellier, Hopital Guy de Chauliac , 80 avenue Augustin Fliche , 34295 Montpellier Cedex 5 , France and
| | - Serge Lumbroso
- b Department of Biochemistry and Molecular Biology , CHU Nîmes, Hôpital Caremeau , Place du Pr Debré , 30029 Nîmes Cedex 4 , France
| | - Kevin Mouzat
- b Department of Biochemistry and Molecular Biology , CHU Nîmes, Hôpital Caremeau , Place du Pr Debré , 30029 Nîmes Cedex 4 , France
| | - William Camu
- a Department of Neurology , CHU Montpellier, Hopital Guy de Chauliac , 80 avenue Augustin Fliche , 34295 Montpellier Cedex 5 , France and
| |
Collapse
|
7
|
Wei Q, Chen X, Zheng Z, Guo X, Huang R, Cao B, Zeng Y, Shang H. The predictors of survival in Chinese amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:237-44. [PMID: 25581512 DOI: 10.3109/21678421.2014.993650] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease, so it is important to explore the survival factors for ALS. Our aim was to evaluate the predictors of survival in Chinese ALS patients. A total of 1049 sporadic ALS patients were enrolled. Kaplan-Meier curves were used to compare survival time. Cox proportional hazards function and the hazard ratio were used to identify adjusted prognostic predictors. Results showed that the mean age of onset was 52.6 ± 12.0 years. During follow-up, 155 patients (14.8%) were lost and 378 patients were deceased. Median survival was 33 months for the deceased patients. In the adjusted Cox proportional hazard model, age of onset, diagnosis delay, rate of disease progression, and non-invasive positive pressure ventilation (NIPPV) treatment had an effect on survival in ALS. In conclusion, our study provides information on survival factors for Chinese ALS patients. Although the onset age of Chinese ALS patients is earlier than that of Caucasian patients, survival factors, including the age of onset, diagnostic delay, rate of disease progression, and NIPPV treatment, are similar.
Collapse
Affiliation(s)
- Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University , Chengdu Sichuan , China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nakamura A, Kuru S, Hineno A, Kobayashi C, Kinoshita T, Miyazaki D, Ikeda SI. Slowly progressing lower motor neuron disease caused by a novel duplication mutation in exon 1 of the SOD1 gene. Neurobiol Aging 2014; 35:2420.e7-2420.e12. [PMID: 24838187 DOI: 10.1016/j.neurobiolaging.2014.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/13/2014] [Accepted: 04/13/2014] [Indexed: 12/13/2022]
Abstract
Familial amyotrophic lateral sclerosis accounts for about 5% of all cases of the neurodegenerative disorder amyotrophic lateral sclerosis. Genetic mutations in Cu/Zn superoxide dismutase (SOD1) have been associated with one kind of familial amyotrophic lateral sclerosis (ALS1). We identified a novel duplication mutation in exon 1 of the SOD1 gene in a Japanese family whose members had lower motor neuron diseases. The patients showed slow disease progression, with the onset of lower limb muscle weakness and exertional dyspnea. Some patients had mild motor and sensory neuropathy and/or bladder dysfunction, which is further evidence that SOD1 mutation results in a predominantly lower motor neuron phenotype.
Collapse
Affiliation(s)
- Akinori Nakamura
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine l, Matsumoto Japan; Intractable Disease Care Center, Shinshu University Hospital, Matsumoto, Japan.
| | - Satoshi Kuru
- Department of Neurology, National Suzuka-Hospital, Suzuka, Japan
| | - Akiyo Hineno
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine l, Matsumoto Japan
| | - Chinatsu Kobayashi
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine l, Matsumoto Japan
| | - Tomomi Kinoshita
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine l, Matsumoto Japan
| | - Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine l, Matsumoto Japan
| | - Shu-ichi Ikeda
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine l, Matsumoto Japan
| |
Collapse
|
9
|
Brady CB, Trevor KT, Stein TD, Deykin EY, Perkins SD, Averill JG, Guilderson L, McKee AC, Renner SW, Kowall NW. The Department of Veterans Affairs Biorepository Brain Bank: a national resource for amyotrophic lateral sclerosis research. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:591-7. [PMID: 23971854 DOI: 10.3109/21678421.2013.822516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our objective was to describe a unique national resource to facilitate amyotrophic lateral sclerosis (ALS) research, the Department of Veterans Affairs Biorepository Brain Bank. Enrolled veterans receive biannual telephone follow-up to collect clinical data until death including the ALS Functional Rating Scale-Revised (ALSFRS-R). A comprehensive post mortem examination is performed and a wide range of fixed and frozen brain and spinal cord samples are banked. As of December 2012, 240 veterans were enrolled from 47 states and post mortem tissue recoveries were performed on 100 veterans from 37 states. Average disease duration was 13.5 (range 3-45) years. Average follow-up for living subjects was 3.1 years and average ALSFRS-R score was 23.5 compared to 25.9 (12-24 months earlier), indicating slow disease progression. ALS was confirmed by post mortem examination in 97% of cases. Eighty-six percent of cases were TDP-43-positive. Additional neuropathological diagnoses include Lewy body disease (13%), frontotemporal lobar degeneration (6.3%), chronic traumatic encephalopathy with motor neuron disease (3.2%), and Alzheimer's disease (2.1%). Tissue RIN values were ≥ 4.0 in 88% of cases. In conclusion, the availability of high quality fixed and frozen CNS tissue from this well characterized cohort is an important resource to facilitate research into genetic and environmental risk factors and clinical pathological relationships in ALS.
Collapse
|
10
|
Kuźma-Kozakiewicz M, Berdyński M, Morita M, Takahashi Y, Kawata A, Kaida KI, Kaźmierczak B, Lusakowska A, Goto J, Tsuji S, Zekanowski C, Kwieciński H. Recurrent K3E mutation in Cu/Zn superoxide dismutase gene associated with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:608-14. [PMID: 23898858 DOI: 10.3109/21678421.2013.812119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) gene mutations are the most frequently reported genetic causes of amyotrophic lateral sclerosis (ALS). The objective of the study was to describe a clinical phenotype and haplotype background of Polish and Japanese ALS patients harbouring the K3E SOD1 mutation. The K3E mutation was identified by direct sequencing, high resolution melting analysis or high-throughput microarray-based resequencing system. Microsatellite polymorphic markers flanking SOD1 were genotyped in members of six kindreds and two SALS patients. Results demonstrated that the K3E mutation was responsible for classic ALS. The median age of onset was 54 years. The clinical phenotype did not substantially differ between SALS and FALS cases of either ethnic origin, with some intrafamiliar variabilities. There was a limb onset in 92% of patients. In patients with bulbar syndrome, dysphagia predominated over dysarthria. Respiratory insufficiency was found in 61.1% of patients (19-84 months after the first symptoms onset). Median survival was 101 months with age of death ranging from 45 to 77 years. K3E was the most frequent SOD1 mutation among Polish FALS patients. It originated independently, on different haplotype background in the Polish and Japanese populations. In conclusion, recurrent K3E mutation results in a relatively slowly progressing limb onset ALS with classic phenotype.
Collapse
|
11
|
Nakamura A, Hineno A, Yoshida K, Sekijima Y, Hanaoka-Tachibana N, Takei YI, Ohara S, Ikeda SI. Marked intrafamilial phenotypic variation in a family with SOD1 C111Y mutation. ACTA ACUST UNITED AC 2012. [DOI: 10.3109/17482968.2012.656311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Ghiasi P, Hosseinkhani S, Noori A, Nafissi S, Khajeh K. Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurol Res 2012; 34:297-303. [PMID: 22450425 DOI: 10.1179/1743132812y.0000000012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Several lines of evidence suggest that mitochondrial dysfunction is involved in amyotrophic lateral sclerosis (ALS), but despite the fact that mitochondria play a central role in excitotoxicity, oxidative stress, and apoptosis, the intimate underlying mechanism linking mitochondrial defects to motor neuron degeneration in ALS still remains elusive. This study was performed to assess the mitochondrial respiratory chain dysfunction and cellular energy index (ATP/ADP ratio) in lymphocytes of ALS patients. METHODS In this study, activity of mitochondrial respiratory chain complex I (measured as NADH-ferricyanide reductase) and both intracellular ATP and ADP measurements were performed on lymphocytes of ALS patients (n = 14) and control subjects (n = 26). Then, ATP/ADP ratio was calculated. RESULTS Our finding showed that in patients compared with controls, complex I activity and intracellular ATP were significantly reduced (P = 0·001) and intracellular ADP content was increased (P<0·005) and ATP/ADP ratio subsequently was decreased and also we found strong correlation between complex I activity and intracellular ATP content and strong reverse correlation between complex I activity and intracellular ADP content in the patients with ALS (r(2) = 0·90). DISCUSSION This study suggests that complex I deficiency and both reduction in intracellular ATP and increase in intracellular ADP content may be involved in the progression and pathogenesis of ALS.
Collapse
Affiliation(s)
- Parisa Ghiasi
- Department of Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|