1
|
Xu WQ, Ni W, Wang RM, Dong Y, Wu ZY. A novel ceruloplasmin mutation identified in a Chinese patient and clinical spectrum of aceruloplasminemia patients. Metab Brain Dis 2021; 36:2273-2281. [PMID: 34347207 DOI: 10.1007/s11011-021-00799-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Aceruloplasminemia (ACP) is a rare disorder of iron overload resulting from ceruloplasmin (CP) variants. Because of its rarity and heterogeneity, the diagnosis of ACP is often missed or misdiagnosed. Here, we aim to present a clinical spectrum of ACP and raise more attention to the early diagnosis. Whole exome sequencing (WES) was performed in a Chinese female patient suspected with ACP and her clinical data were collected in detail. The PubMed databases was searched for published ACP patients within the last decade, and we present a systematic review of their clinical features with data extracted from these researches. A novel pathogenic variant (c.2689delC) and a known pathogenic variant (c.606dupA) within ceruloplasmin gene were identified in our patient and confirmed the diagnosis of ACP. Then we reviewed 51 ACP patients including the case we reported here. A possible timeline of symptoms was discovered, anemia appears first (29.7 years old on average), followed by diabetes (37.3 years old) and finally neurological symptoms (50.7 years old). The delay in diagnosis was significantly shortened in patients without neurological symptoms. Biochemical triad including anemia, low to undetectable serum ceruloplasmin, low serum iron and/or hyperferritinemia, showed better sensitivity in diagnosis than clinical triad including diabetes, neurological symptoms, and retinal degeneration. Due to the variable symptom spectrum, patients with ACP often visit different departments, which can lead to misdiagnosis. Clinical attention needs to be paid to symptoms and tests that have a warning effect. Prompt diagnosis in the early stage of the disease can be beneficial.
Collapse
Affiliation(s)
- Wan-Qing Xu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Wang Ni
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Rou-Min Wang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Iankova V, Karin I, Klopstock T, Schneider SA. Emerging Disease-Modifying Therapies in Neurodegeneration With Brain Iron Accumulation (NBIA) Disorders. Front Neurol 2021; 12:629414. [PMID: 33935938 PMCID: PMC8082061 DOI: 10.3389/fneur.2021.629414] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegeneration with Brain Iron Accumulation (NBIA) is a heterogeneous group of progressive neurodegenerative diseases characterized by iron deposition in the globus pallidus and the substantia nigra. As of today, 15 distinct monogenetic disease entities have been identified. The four most common forms are pantothenate kinase-associated neurodegeneration (PKAN), phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN), beta-propeller protein-associated neurodegeneration (BPAN) and mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurodegeneration with Brain Iron Accumulation disorders present with a wide spectrum of clinical symptoms such as movement disorder signs (dystonia, parkinsonism, chorea), pyramidal involvement (e.g., spasticity), speech disorders, cognitive decline, psychomotor retardation, and ocular abnormalities. Treatment remains largely symptomatic but new drugs are in the pipeline. In this review, we discuss the rationale of new compounds, summarize results from clinical trials, provide an overview of important results in cell lines and animal models and discuss the future development of disease-modifying therapies for NBIA disorders. A general mechanistic approach for treatment of NBIA disorders is with iron chelators which bind and remove iron. Few studies investigated the effect of deferiprone in PKAN, including a recent placebo-controlled double-blind multicenter trial, demonstrating radiological improvement with reduction of iron load in the basal ganglia and a trend to slowing of disease progression. Disease-modifying strategies address the specific metabolic pathways of the affected enzyme. Such tailor-made approaches include provision of an alternative substrate (e.g., fosmetpantotenate or 4′-phosphopantetheine for PKAN) in order to bypass the defective enzyme. A recent randomized controlled trial of fosmetpantotenate, however, did not show any significant benefit of the drug as compared to placebo, leading to early termination of the trials' extension phase. 4′-phosphopantetheine showed promising results in animal models and a clinical study in patients is currently underway. Another approach is the activation of other enzyme isoforms using small molecules (e.g., PZ-2891 in PKAN). There are also compounds which counteract downstream cellular effects. For example, deuterated polyunsaturated fatty acids (D-PUFA) may reduce mitochondrial lipid peroxidation in PLAN. In infantile neuroaxonal dystrophy (a subtype of PLAN), desipramine may be repurposed as it blocks ceramide accumulation. Gene replacement therapy is still in a preclinical stage.
Collapse
Affiliation(s)
- Vassilena Iankova
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ivan Karin
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Klopstock
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Susanne A Schneider
- Department of Neurology With Friedrich Baur Institute, University Hospital of Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Miyake Z, Nakamagoe K, Yoshida K, Kondo T, Tamaoka A. Deferasirox Might Be Effective for Microcytic Anemia and Neurological Symptoms Associated with Aceruloplasminemia: A Case Report and Review of the Literature. Intern Med 2020; 59:1755-1761. [PMID: 32238721 PMCID: PMC7434547 DOI: 10.2169/internalmedicine.4178-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The patient was a 64-year-old man presented with difficulty in walking, articulation, and swallowing, as well as cognitive impairment. He had refractory microcytic anemia and diabetes mellitus. His serum levels of iron, copper, and ceruloplasmin were low. Magnetic resonance imaging suggested iron deposition in the basal ganglia, thalami, cerebellar dentate nuclei, and cerebral and cerebellar cortices. He was diagnosed with aceruloplasminemia after a ceruloplasmin gene analysis. Iron chelation therapy with deferasirox improved his anemia and cerebellar symptoms, which included dysarthria and limb ataxia. The present study and previous reports indicate that cerebellar symptoms with aceruloplasminemia might respond to deferasirox in less than one year.
Collapse
Affiliation(s)
- Zenshi Miyake
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kiyotaka Nakamagoe
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Research, Shinshu University School of Medicine, Japan
| | - Tadashi Kondo
- Department of Digestive Surgery, Faculty of Medicine, University of Tsukuba, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
4
|
Vroegindeweij LHP, Boon AJW, Wilson JHP, Langendonk JG. Effects of iron chelation therapy on the clinical course of aceruloplasminemia: an analysis of aggregated case reports. Orphanet J Rare Dis 2020; 15:105. [PMID: 32334607 PMCID: PMC7183696 DOI: 10.1186/s13023-020-01385-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background Aceruloplasminemia is a rare genetic iron overload disorder, characterized by progressive neurological manifestations. The effects of iron chelation on neurological outcomes have only been described in case studies, and are inconsistent. Aggregated case reports were analyzed to help delineate the disease-modifying potential of treatment. Methods Data on clinical manifestations, treatment and neurological outcomes of treatment were collected from three neurologically symptomatic Dutch patients, who received deferiprone with phlebotomy as a new therapeutic approach, and combined with other published cases. Neurological outcomes of treatment were compared between patients starting treatment when neurologically symptomatic and patients without neurological manifestations. Results Therapeutic approaches for aceruloplasminemia have been described in 48 patients worldwide, including our three patients. Initiation of treatment in a presymptomatic stage of the disease delayed the estimated onset of neurological manifestations by 10 years (median age 61 years, SE 5.0 vs. median age 51 years, SE 0.6, p = 0.001). Although in 11/20 neurologically symptomatic patients neurological manifestations remained stable or improved during treatment, these patients were treated significantly shorter than patients who deteriorated neurologically (median 6 months vs. median 43 months, p = 0.016). Combined iron chelation therapy with deferiprone and phlebotomy for up to 34 months could be safely performed in our patients without symptomatic anemia (2/3), but did not prevent further neurological deterioration. Conclusions Early initiation of iron chelation therapy seems to postpone the onset of neurological manifestations in aceruloplasminemia. Publication bias and significant differences in duration of treatment should be considered when interpreting reported treatment outcomes in neurologically symptomatic patients. Based on theoretical grounds and the observed long-term safety and tolerability in our study, we recommend iron chelation therapy with deferiprone in combination with phlebotomy for aceruloplasminemia patients without symptomatic anemia.
Collapse
Affiliation(s)
- Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Agnita J W Boon
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - J H Paul Wilson
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Piperno A, Alessio M. Aceruloplasminemia: Waiting for an Efficient Therapy. Front Neurosci 2018; 12:903. [PMID: 30568573 PMCID: PMC6290325 DOI: 10.3389/fnins.2018.00903] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022] Open
Abstract
Aceruloplasminemia is an ultra-rare hereditary disorder caused by defective production of ceruloplasmin. Its phenotype is characterized by iron-restricted erythropoiesis and tissue iron overload, diabetes, and progressive retinal and neurological degeneration. Ceruloplasmin is a ferroxidase that plays a critical role in iron homeostasis through the oxidation and mobilization of iron from stores and subsequent incorporation of ferric iron into transferrin (Tf), which becomes available for cellular uptake via the Tf receptor. In addition, ceruloplasmin has antioxidant properties preventing the production of deleterious reactive oxygen species via the Fenton reaction. Some recent findings suggest that aceruloplasminemia phenotypes can be more heterogeneous than previously believed, varying within a wide range. Within this large heterogeneity, microcytosis with or without anemia, low serum iron and high serum ferritin, and diabetes are the early hallmarks of the disease, while neurological manifestations appear 10-20 years later. The usual therapeutic approach is based on iron chelators that are efficacious in reducing systemic iron overload. However, they have demonstrated poor efficacy in counteracting the progression of neurologic manifestations, and also often aggravate anemia, thereby requiring drug discontinuation. Open questions remain regarding the mechanisms leading to neurological manifestation and development of diabetes, and iron chelation therapy (ICT) efficacy. Recent studies in animal models of aceruloplasminemia support the possibility of new therapeutic approaches by parenteral ceruloplasmin administration. In this review we describe the state of the art of aceruloplasminemia with particular attention on the pathogenic mechanisms of the disease and therapeutic approaches, both current and perspective.
Collapse
Affiliation(s)
- Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Medical Genetic Unit, San Gerardo Hospital, ASST-Monza, Monza, Italy
| | - Massimo Alessio
- Division of Genetics and Cell Biology, IRCCS-Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Watanabe M, Ohyama K, Suzuki M, Nosaki Y, Hara T, Iwai K, Kono S, Miyajima H, Mokuno K. Aceruloplasminemia with Abnormal Compound Heterozygous Mutations Developed Neurological Dysfunction during Phlebotomy Therapy. Intern Med 2018; 57:2713-2718. [PMID: 29709961 PMCID: PMC6191604 DOI: 10.2169/internalmedicine.9855-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aceruloplasminemia is an autosomal recessive inherited disorder caused by ceruloplasmin gene mutations. The loss of ferroxidase activity of ceruloplasmin due to gene mutations causes a disturbance in cellular iron transport. We herein describe a patient with aceruloplasminemia, who presented with diabetes mellitus that was treated by insulin injections, liver hemosiderosis treated by phlebotomy therapy, and neurological impairment. A genetic analysis of the ceruloplasmin gene revealed novel compound heterozygous mutations of c.1286_1290insTATAC in exon 7 and c.2185delC in exon 12. This abnormal compound heterozygote had typical clinical features similar to those observed in aceruloplasminemia patients with other gene mutations.
Collapse
Affiliation(s)
- Maki Watanabe
- Department of Neurology, Toyohashi Municipal Hospital, Japan
| | - Ken Ohyama
- Department of Neurology, Toyohashi Municipal Hospital, Japan
| | - Masashi Suzuki
- Department of Neurology, Toyohashi Municipal Hospital, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Japan
| | - Yasunobu Nosaki
- Department of Neurology, Toyohashi Municipal Hospital, Japan
| | - Takashi Hara
- Department of Neurology, Toyohashi Municipal Hospital, Japan
| | - Katsushige Iwai
- Department of Neurology, Toyohashi Municipal Hospital, Japan
| | - Satoshi Kono
- First Department of Medicine, Hamamatsu University School of Medicine, Japan
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Japan
| | - Kenji Mokuno
- Department of Neurology, Toyohashi Municipal Hospital, Japan
| |
Collapse
|
7
|
Dusek P, Schneider SA, Aaseth J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 2016; 38:81-92. [PMID: 27033472 DOI: 10.1016/j.jtemb.2016.03.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/14/2023]
Abstract
Disturbance of cerebral iron regulation is almost universal in neurodegenerative disorders. There is a growing body of evidence that increased iron deposits may contribute to degenerative changes. Thus, the effect of iron chelation therapy has been investigated in many neurological disorders including rare genetic syndromes with neurodegeneration with brain iron accumulation as well as common sporadic disorders such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis. This review summarizes recent advances in understanding the role of iron in the etiology of neurodegeneration. Outcomes of studies investigating the effect of iron chelation therapy in neurodegenerative disorders are systematically presented in tables. Iron chelators, particularly the blood brain barrier-crossing compound deferiprone, are capable of decreasing cerebral iron in areas with abnormally high concentrations as documented by MRI. Yet, currently, there is no compelling evidence of the clinical effect of iron removal therapy on any neurological disorder. However, several studies indicate that it may prevent or slow down disease progression of several disorders such as aceruloplasminemia, pantothenate kinase-associated neurodegeneration or Parkinson's disease.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Czech Republic; Institute of Neuroradiology, University Göttingen, Göttingen, Germany.
| | | | - Jan Aaseth
- Innlandet Hospital Trust, Kongsvinger, Norway; Hedmark University College, Elverum, Norway
| |
Collapse
|
8
|
Vroegindeweij LHP, van der Beek EH, Boon AJW, Hoogendoorn M, Kievit JA, Wilson JHP, Langendonk JG. Aceruloplasminemia presents as Type 1 diabetes in non-obese adults: a detailed case series. Diabet Med 2015; 32:993-1000. [PMID: 25661792 DOI: 10.1111/dme.12712] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 11/27/2022]
Abstract
AIM To detect features that might lead to the early diagnosis and treatment of aceruloplasminemia, as initiation of treatment before the onset of neurological symptoms is likely to prevent neurological deterioration. METHODS The PubMed and OMIM databases were searched for published cases of aceruloplasminemia. Diagnostic criteria for aceruloplasminemia were undetectable or very low serum ceruloplasmin, hyperferritinemia and low transferrin saturation. Clinical, biochemical and radiological data on the presentation and follow-up of the cases were extracted and completed through e-mail contact with all authors. RESULTS We present an overview of 55 aceruloplasminemia cases, including three previously unreported cases. Diabetes mellitus was the first symptom related to aceruloplasminemia in 68.5% of the patients, manifesting at a median age of 38.5 years, and often accompanied by microcytic or normocytic anaemia. The combination preceded neurological symptoms in almost 90% of the neurologically symptomatic patients and was found 12.5 years before the onset of neurological symptoms. CONCLUSIONS There is a diagnostic window during which diabetes and anaemia are present although there is an absence of neurological symptoms. Screening for aceruloplasminemia in adult non-obese individuals presenting with antibody-negative, insulin-dependent diabetes mellitus and unexplained anaemia is recommended. The combination of ferritin and transferrin saturation provides a sensitive initial measure for aceruloplasminemia.
Collapse
Affiliation(s)
- L H P Vroegindeweij
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - E H van der Beek
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - A J W Boon
- Department of Neurology, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - M Hoogendoorn
- Department of Haematology, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - J A Kievit
- Department of Clinical Genetics, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - J H P Wilson
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - J G Langendonk
- Department of Internal Medicine, Centre for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Aceruloplasminemia in a Turkish adolescent with a novel mutation of ceruloplasmin gene: the first diagnosed case from Turkey. J Pediatr Hematol Oncol 2014; 36:e423-5. [PMID: 25247888 DOI: 10.1097/mph.0000000000000053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aceruloplasminemia is a rare autosomal recessive disease that affects the iron metabolism of the body. When there is a lack of ceruloplasmin ferroxidase activity, iron accumulates, especially in the brain, pancreas, liver, and retina. The first symptom is generally a persistent hypochromic microcytic anemia with a mild high-serum ferritin level. The affected patients are usually recognized at later ages, when the neurological symptoms appear. The neurological outcome has an adverse effect on the prognosis, which may result in fatality. Therefore, early diagnosis and intervention may prevent a devastating neurological damage. Here, we report a case of aceruloplasminemia in a teenage girl with hypochromic microcytic anemia.
Collapse
|
10
|
Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20:1324-63. [PMID: 23815406 PMCID: PMC3935772 DOI: 10.1089/ars.2012.4931] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Aceruloplasminemia is an inherited neurodegenerative disorder involving "neurodegeneration with brain iron accumulation," which is caused by genetic defects in the ceruloplasmin gene. Ceruloplasmin is a multicopper oxidase with ferroxidase activity that oxidizes ferrous iron following its transfer to extracellular transferrin. In the central nervous system, a glycosylphosphatidylinositol-linked ceruloplasmin bound to the cell membranes was found to be the major isoform of this protein. Aceruloplasminemia is characterized by diabetes, retinal degeneration, and progressive neurological symptoms, including extrapyramidal symptoms, ataxia, and dementia. Clinical and pathological studies and investigations of cell culture and murine models revealed that there is an iron-mediated cellular radical injury caused by a marked accumulation of iron in the affected parenchymal tissues. The aim of this chapter is to provide an overview of not only the clinical features, genetic and molecular pathogenesis, and treatment of aceruloplasminemia but also the biological and physiological features of iron metabolism.
Collapse
Affiliation(s)
- Satoshi Kono
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
12
|
Iron dysregulation in movement disorders. Neurobiol Dis 2012; 46:1-18. [DOI: 10.1016/j.nbd.2011.12.054] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 01/04/2023] Open
|