1
|
Hyland PL, Chekka LMS, Samarth DP, Rosenzweig BA, Decker E, Mohamed EG, Guo Y, Matta MK, Sun Q, Wheeler W, Sanabria C, Weaver JL, Schrieber SJ, Florian J, Wang YM, Strauss DG. Evaluating the Utility of Proteomics for the Identification of Circulating Pharmacodynamic Biomarkers of IFNβ-1a Biologics. Clin Pharmacol Ther 2023; 113:98-107. [PMID: 36308070 DOI: 10.1002/cpt.2778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Proteomics has the potential to identify pharmacodynamic (PD) biomarkers for similarity assessment of proposed biosimilars without relying on clinical efficacy end points. In this study, with 36 healthy participants randomized to therapeutic doses of interferon-beta 1a products (IFNβ-1a) or pegylated-IFNβ-1a (pegIFNβ-1a) approved to treat multiple sclerosis or placebo, we evaluated the utility of a proteomic assay that profiles > 7,000 plasma proteins. IFNβ-1a and pegIFNβ-1a resulted in 248 and 528 differentially expressed protein analytes, respectively, between treatment and placebo groups over the time course. Thirty-one proteins were prioritized based on a maximal fold change ≥ 2 from baseline, baseline adjusted area under the effect curve (AUEC) and overlap between the 2 products. Of these, the majority had a significant AUEC compared with placebo in response to either product; 8 proteins showed > 4-fold maximal change from baseline. We identified previously reported candidates, beta-2microglobulin and interferon-induced GTP-binding protein (Mx1) with ~ 50% coefficient of variation (CV) for AUEC, and many new candidates (including I-TAC, C1QC, and IP-10) with CVs ranging from 26%-129%. Upstream regulator analysis of differentially expressed proteins predicted activation of IFNβ1 signaling as well as other cytokine, enzyme, and transcription signaling networks by both products. Although independent replication is required to confirm present results, our study demonstrates the utility of proteomics for the identification of individual and composite candidate PD biomarkers that may be leveraged to support clinical pharmacology studies for biosimilar approvals, especially when biologics have complex mechanisms of action or do not have previously characterized PD biomarkers.
Collapse
Affiliation(s)
- Paula L Hyland
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lakshmi Manasa S Chekka
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Deepti P Samarth
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Barry A Rosenzweig
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Erica Decker
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Esraa G Mohamed
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yan Guo
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Murali K Matta
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Qin Sun
- Therapeutic Biologics Protein Team, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - William Wheeler
- Information Management Services, Inc., Rockville, Maryland, USA
| | | | - James L Weaver
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sarah J Schrieber
- Office of Therapeutic Biologics and Biosimilars, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yow-Ming Wang
- Therapeutic Biologics Protein Team, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Ortíz GG, Briones-Torres AL, Benitez-King G, González-Ortíz LJ, Palacios-Magaña CV, Pacheco-Moisés FP. Beneficial Effect of Melatonin Alone or in Combination with Glatiramer Acetate and Interferon β-1b on Experimental Autoimmune Encephalomyelitis. Molecules 2022; 27:molecules27134217. [PMID: 35807462 PMCID: PMC9268121 DOI: 10.3390/molecules27134217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model of multiple sclerosis (MS). Oxidative stress and chronic inflammation play a major role in the pathogenesis of MS and EAE. Melatonin, a neurohormone, has potent anti-inflammatory properties. The aim of our study was to assess the therapeutic properties of melatonin alone or in combination with interferon β-1b (IFNβ-1b) or glatiramer acetate (GA) on EAE. EAE was induced in male Sprague-Dawley rats with an intraperitoneal injection of a homogenate of spinal cord and pig brain. At day 10 post immunization, rats were euthanized, and their brains were immediately excised and processed to measure oxidative stress markers and membrane fluidity. In addition, proinflammatory cytokines were quantified in plasma. Melatonin alone or in combination with GA and IFNβ-1b inhibited the disease process of EAE and the synthesis of proinflammatory cytokines, caused a significant decrement in oxidative stress markers, and preserved the membrane fluidity in the motor cortex, midbrain, and spinal cord. The cumulative index score was significantly reduced in EAE rats treated with melatonin alone or in combination with GA and IFNβ-1b. In conclusion, our findings provide preclinical evidence for the use of melatonin as an adjuvant therapeutic treatment for MS.
Collapse
Affiliation(s)
- Genaro Gabriel Ortíz
- Department of Philosophical and Methodological Disciplines, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Laura Briones-Torres
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Gloria Benitez-King
- National Institute of Psychiatry Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Luis Javier González-Ortíz
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Claudia Verónica Palacios-Magaña
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
- Correspondence:
| |
Collapse
|
3
|
Fitzpatrick JM, Hackett B, Costelloe L, Hind W, Downer EJ. Botanically-Derived Δ 9-Tetrahydrocannabinol and Cannabidiol, and Their 1:1 Combination, Modulate Toll-like Receptor 3 and 4 Signalling in Immune Cells from People with Multiple Sclerosis. Molecules 2022; 27:1763. [PMID: 35335126 PMCID: PMC8951523 DOI: 10.3390/molecules27061763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
The innate immune response to bacterial and viral molecules involves the coordinated production of cytokines, chemokines, and type I interferons (IFNs), which is orchestrated by toll-like receptors (TLRs). TLRs, and their intracellular signalling intermediates, are closely associated with multiple sclerosis (MS) pathogenesis. Recent data from our laboratory reported that the plant-derived cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), regulate viral and bacterial inflammatory signalling pathways controlled by TLR3 and TLR4 in macrophages. The aim of this study was to assess the impact of THC and CBD, when delivered in isolation and in combination (1:1), on TLR3- and TLR4-dependent signalling in peripheral blood mononuclear cells (PBMCs) from people with MS (pwMS; n = 21) and healthy controls (HCs; n = 26). We employed the use of poly(I:C) and lipopolysaccharide (LPS) to induce viral TLR3 and bacterial TLR4 signalling, and PBMCs were pre-exposed to plant-derived highly purified THC (10 μM), CBD (10 μM), or a combination of both phytocannabinoids (1:1 ratio, 10:10 μM), prior to LPS/poly(I:C) exposure. TLR3 stimulation promoted the protein expression of the chemokine CXCL10 and the type I IFN-β in PBMCs from both cohorts. THC and CBD (delivered in 1:1 combination at 10 μM) attenuated TLR3-induced CXCL10 and IFN-β protein expression in PBMCs from pwMS and HCs, and this effect was not seen consistently when THC and CBD were delivered alone. In terms of LPS, TLR4 activation promoted TNF-α expression in PBMCs from both cohorts, and, interestingly, CBD when delivered alone at 10 μM, and in combination with THC (in 1:1 combination at 10 μM), exacerbated TLR4-induced TNF-α protein expression in PBMCs from pwMS and HCs. THC and CBD displayed no evidence of toxicity in primary PBMCs. No significant alteration in the relative expression of TLR3 and TLR4 mRNA, or components of the endocannabinoid system, including the cannabinoid receptor CB1 (encoded by CNR1 gene) and CB2 (encoded by CNR2 gene), and endocannabinoid metabolising enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGLL), was determined in PBMCs from pwMS versus HCs. Given their role in inflammation, TLRs are clinical targets, and data herein identify CBD and THC as TLR3 and TLR4 modulating drugs in primary immune cells in vitro. This offers insight on the cellular target(s) of phytocannabinoids in targeting inflammation in the context of MS.
Collapse
Affiliation(s)
- John-Mark Fitzpatrick
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, D02 R590 Dublin, Ireland; (J.-M.F.); (B.H.)
| | - Becky Hackett
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, D02 R590 Dublin, Ireland; (J.-M.F.); (B.H.)
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, D09 V2N0 Dublin, Ireland;
| | - William Hind
- GW Research Ltd., Sovereign House, Vision Park, Histon CB24 9BZ, UK;
| | - Eric J. Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, D02 R590 Dublin, Ireland; (J.-M.F.); (B.H.)
| |
Collapse
|
4
|
Visser LA, Folcher M, Delgado Simao C, Gutierrez Arechederra B, Escudero E, Uyl-de Groot CA, Redekop WK. The Potential Cost-Effectiveness of a Cell-Based Bioelectronic Implantable Device Delivering Interferon-β1a Therapy Versus Injectable Interferon-β1a Treatment in Relapsing-Remitting Multiple Sclerosis. PHARMACOECONOMICS 2022; 40:91-108. [PMID: 34480325 PMCID: PMC8739553 DOI: 10.1007/s40273-021-01081-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND Current first-line disease-modifying therapies (DMT) for multiple sclerosis (MS) patients are injectable or oral treatments. The Optogenerapy consortium is developing a novel bioelectronic cell-based implant for controlled release of beta-interferon (IFNβ1a) protein into the body. The current study estimated the potential cost effectiveness of the Optogenerapy implant (hereafter: Optoferon) compared with injectable IFNβ1a (Avonex). METHODS A Markov model simulating the costs and effects of Optoferon compared with injectable 30 mg IFNβ1a over a 9-year time horizon from a Dutch societal perspective. Costs were reported in 2019 Euros and discounted at a 4% annual rate; health effects were discounted at a 1.5% annual rate. The cohort consisted of 35-year-old, relapsing-remitting MS patients with mild disability. The device is implanted in a daycare setting, and is replaced every 3 years. In the base-case analysis, we assumed equal input parameters for Optoferon and Avonex regarding disability progression, health effects, adverse event probabilities, and acquisition costs. We assumed reduced annual relapse rates and withdrawal rates for Optoferon compared with Avonex. Sensitivity, scenario, value of information, and headroom analysis were performed. RESULTS Optoferon was the dominant strategy with cost reductions (- €26,966) and health gains (0.45 quality-adjusted life-years gained). A main driver of cost differences are the acquisition costs of Optoferon being 2.5 times less than the costs of Avonex. The incremental cost-effectiveness ratio was most sensitive to variations in the annual acquisition costs of Avonex, the annual withdrawal rate of Avonex and Optoferon, and the disability progression of Avonex. CONCLUSION Innovative technology such as the Optoferon implant may be a cost-effective therapy for patients with MS. The novel implantable mode of therapeutic protein administration has the potential to become a new mode of treatment administration for MS patients and in other disease areas. However, trials are needed to establish safety and effectiveness.
Collapse
Affiliation(s)
- Laurenske A. Visser
- Erasmus School of Health Policy and Management, Department: Health Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Marc Folcher
- Institute of Molecular and Clinical Opthalmology Basel, Basel, Switzerland
| | - Claudia Delgado Simao
- Functional Printing and Embedded Devices Unit, Eurecat, Centre Tecnològic de Catalunya, 08302 Mataró, Spain
| | | | - Encarna Escudero
- Plastic Materials Unit, Eurecat, Centre Tecnològic de Catalunya, Cerdanyola de Valles, Spain
| | - Carin A. Uyl-de Groot
- Erasmus School of Health Policy and Management, Department of Health Technology Assessment, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - William Ken Redekop
- Erasmus School of Health Policy and Management, Department: Health Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
6
|
Feliciano LM, Sávio ALV, de Castro Marcondes JP, da Silva GN, Salvadori DMF. Genetic Alterations in Patients with Two Clinical Phenotypes of Multiple Sclerosis. J Mol Neurosci 2019; 70:120-130. [PMID: 31686392 DOI: 10.1007/s12031-019-01408-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/26/2019] [Indexed: 11/26/2022]
Abstract
The etiology of multiple sclerosis (MS) is still not known, but the interaction of genetic, immunological, and environmental factors seem to be involved. This study aimed to investigate genetic alterations and the vitamin D status in patients with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS). A total of 53 patients (29 RRMS; 24 SPMS) and 25 healthy subjects were recruited to evaluate the micronucleated cell (MNC) frequency and nuclear abnormalities in the buccal mucosa, gene expression profiling in mononuclear cells, and plasmatic vitamin D concentration in the blood. Results showed a higher frequency of cells with karyorrhexis (SPMS) and lower frequencies of nuclear pyknosis (RRMS and SPMS) and karyolysis (SPMS) in patients with MS. Significant increase in the frequency of MNC was detected in the buccal mucosa of RRMS and SPMS patients. HIF1A, IL13, IL18, MYC, and TNF were differentially expressed in MS patients, and APP was overexpressed in cells of RRMS compared to SPMS patients. No relationship was observed between vitamin D level and the differentially expressed genes. In conclusion, the cytogenetic alterations in the buccal mucosa can be important indicators of genetic instability and degenerative processes in patients with MS. Furthermore, our data introduced novel biomarkers associated with the molecular pathogenesis of MS.
Collapse
|
7
|
Braley TJ, Huber AK, Segal BM, Kaplish N, Saban R, Washnock-Schmid JM, Chervin RD. A randomized, subject and rater-blinded, placebo-controlled trial of dimethyl fumarate for obstructive sleep apnea. Sleep 2019; 41:5003425. [PMID: 29800466 DOI: 10.1093/sleep/zsy109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/03/2023] Open
Abstract
Study Objectives To investigate the therapeutic effect of dimethyl fumarate (DMF, an immunomodulatory agent) on obstructive sleep apnea (OSA), and potential influence of any such effect by selected proinflammatory molecules. Methods Patients with OSA who deferred positive airway pressure therapy were randomized (2:1) to receive DMF or placebo for 4 months. Participants underwent polysomnography before randomization and at 4 months. Blood was collected monthly. The primary outcome was the mean group change in respiratory disturbance index (δ-RDI). Secondary analyses focused on the association between treatment effect of DMF (on RDI) and expression of plasma cytokines and chemokines, or nuclear factor κ-B (NFκB) signaling molecules in peripheral blood mononuclear cells. Results N = 65 participants were randomized. N = 50 participants (DMF = 35, placebo = 15) had complete data for final analyses. The mean difference in δ-RDI between groups was 13.3 respiratory events/hour of sleep: -3.1+/-12.9 vs. 10.2+/-13.1 in DMF and placebo groups, respectively (mixed-effects model treatment effect: β = -0.14, SE = 0.062, p = 0.033). Plasma levels of TNF-α showed only nonsignificant decreases, and IL-10 and IL-13 only nonsignificant increases, in DMF-treated participants compared with placebo. No significant interaction or main effect on RDI for selected cytokines and chemokines was found. Participants with a therapeutic response to DMF did experience significant reductions in intracellular NFκB signaling molecules at 4 months. Overall, DMF was well-tolerated. Conclusions The immunomodulatory drug DMF partially ameliorates OSA severity. Suppression of systemic inflammation through reduction of NFκB signaling may mediate this effect. Clinical Trials ClinicalTrials.gov, NCT02438137, https://clinicaltrials.gov/ct2/show/NCT02438137?term=NCT02438137&rank=1.
Collapse
Affiliation(s)
- Tiffany J Braley
- Department of Neurology, Multiple Sclerosis and Sleep Disorders Centers, University of Michigan, Ann Arbor, MI
| | - Amanda K Huber
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology, University of Michigan, Ann Arbor, MI
| | - Benjamin M Segal
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology, University of Michigan, Ann Arbor, MI
| | - Neeraj Kaplish
- Department of Neurology, Sleep Disorders Center, University of Michigan, Ann Arbor, MI
| | - Rachel Saban
- Oakland University William Beaumont School of Medicine, Rochester, MI
| | - Jesse M Washnock-Schmid
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology, University of Michigan, Ann Arbor, MI
| | - Ronald D Chervin
- Department of Neurology, Sleep Disorders Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
8
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity. Int J Mol Sci 2017; 18:ijms18112306. [PMID: 29099057 PMCID: PMC5713275 DOI: 10.3390/ijms18112306] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). It affects more than two million people worldwide, mainly young adults, and may lead to progressive neurological disability. Chemokines and their receptors have been shown to play critical roles in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a murine disease model induced by active immunization with myelin proteins or transfer of encephalitogenic CD4+ T cells that recapitulates clinical and neuropathological features of MS. Chemokine ligand-receptor interactions orchestrate leukocyte trafficking and influence multiple pathophysiological cellular processes, including antigen presentation and cytokine production by dendritic cells (DCs). The C-C class chemokines 17 (CCL17) and 22 (CCL22) and their C-C chemokine receptor 4 (CCR4) have been shown to play an important role in homeostasis and inflammatory responses. Here, we provide an overview of the involvement of CCR4 and its ligands in CNS autoimmunity. We review key clinical studies of MS together with experimental studies in animals that have demonstrated functional roles of CCR4, CCL17, and CCL22 in EAE pathogenesis. Finally, we discuss the therapeutic potential of newly developed CCR4 antagonists and a humanized anti-CCR4 antibody for treatment of MS.
Collapse
|
10
|
Chemokine CCL17 is expressed by dendritic cells in the CNS during experimental autoimmune encephalomyelitis and promotes pathogenesis of disease. Brain Behav Immun 2017. [PMID: 28642092 DOI: 10.1016/j.bbi.2017.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The CC chemokine ligand 17 (CCL17) and its cognate CC chemokine receptor 4 (CCR4) are known to control leukocyte migration, maintenance of TH17 cells, and regulatory T cell (Treg) expansion in vivo. In this study we characterized the expression and functional role of CCL17 in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Using a CCL17/EGFP reporter mouse model, we could show that CCL17 expression in the CNS can be found in a subset of classical dendritic cells (DCs) that immigrate into the CNS during the effector phase of MOG-induced EAE. CCL17 deficient (CCL17-/-) mice exhibited an ameliorated disease course upon MOG-immunization, associated with reduced immigration of IL-17 producing CD4+ T cells and peripheral DCs into the CNS. CCL17-/- DCs further showed equivalent MHC class II and costimulatory molecule expression and an equivalent capacity to secrete IL-23 and induce myelin-reactive TH17 cells when compared to wildtype DCs. In contrast, their transmigration in an in vitro model of the blood-brain barrier was markedly impaired. In addition, peripheral Treg cells were enhanced in CCL17-/- mice at peak of disease pointing towards an immunoregulatory function of CCL17 in EAE. Our study identifies CCL17 as a unique modulator of EAE pathogenesis regulating DC trafficking as well as peripheral Treg cell expansion in EAE. Thus, CCL17 operates at distinct levels and on different cell subsets during immune response in EAE, a property harboring therapeutic potential for the treatment of CNS autoimmunity.
Collapse
|
11
|
Schlöder J, Berges C, Luessi F, Jonuleit H. Dimethyl Fumarate Therapy Significantly Improves the Responsiveness of T Cells in Multiple Sclerosis Patients for Immunoregulation by Regulatory T Cells. Int J Mol Sci 2017; 18:ijms18020271. [PMID: 28134847 PMCID: PMC5343807 DOI: 10.3390/ijms18020271] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/14/2017] [Accepted: 01/22/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease caused by an insufficient suppression of autoreactive T lymphocytes. One reason for the lack of immunological control is the reduced responsiveness of T effector cells (Teff) for the suppressive properties of regulatory T cells (Treg), a process termed Treg resistance. Here we investigated whether the disease-modifying therapy of relapsing-remitting MS (RRMS) with dimethyl fumarate (DMF) influences the sensitivity of T cells in the peripheral blood of patients towards Treg-mediated suppression. We demonstrated that DMF restores responsiveness of Teff to the suppressive function of Treg in vitro, presumably by down-regulation of interleukin-6R (IL-6R) expression on T cells. Transfer of human immune cells into immunodeficient mice resulted in a lethal graft-versus-host reaction triggered by human CD4⁺ Teff. This systemic inflammation can be prevented by activated Treg after transfer of immune cells from DMF-treated MS patients, but not after injection of Treg-resistant Teff from therapy-naïve MS patients. Furthermore, after DMF therapy, proliferation and expansion of T cells and the immigration into the spleen of the animals is reduced and modulated by activated Treg. In summary, our data reveals that DMF therapy significantly improves the responsiveness of Teff in MS patients to immunoregulation.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Carsten Berges
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Felix Luessi
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
12
|
Bertoli D, Serana F, Sottini A, Cordioli C, Maimone D, Amato MP, Centonze D, Florio C, Puma E, Capra R, Imberti L. Less Frequent and Less Severe Flu-Like Syndrome in Interferon Beta-1a Treated Multiple Sclerosis Patients with at Least One Allele Bearing the G>C Polymorphism at Position -174 of the IL-6 Promoter Gene. PLoS One 2015; 10:e0135441. [PMID: 26285213 PMCID: PMC4540473 DOI: 10.1371/journal.pone.0135441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/25/2015] [Indexed: 11/23/2022] Open
Abstract
One of the most common adverse event of interferon beta (IFNβ) therapy for multiple sclerosis is flu-like syndrome (FLS), which has been reportedly related to increased levels of cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Average cytokine levels can be affected by single nucleotide polymorphism in the gene promoter regions. To investigate whether IL-6 -174 G>C and TNF-α -376 G>A polymorphisms could be correlated to the incidence of FLS, and whether an anti-inflammatory/antipyretic therapy may influence FLS development, a prospective observational study was performed in 190 treatment naïve, multiple sclerosis patients who started IM IFNβ-1a 30mcg once weekly. The identification of IL-6 -174 G>C and TNF-α -376 G>A polymorphisms was achieved by performing an amplification-refractory mutation system. Serum IL-6 levels were measured using enzyme-linked immunosorbent assay in blood samples taken before therapy and then after the first and last IFNβ-1a injection of the follow-up. FLS-related symptoms were recorded by patients once per week during the first 12 weeks of therapy into a self-reported diary. We found that patients carrying at least one copy of the C allele at position -174 in the promoter of IL-6 gene produced lower levels of IL-6 and were less prone to develop FLS, which was also less severe. On the contrary, the polymorphism of TNF-α had no effect on FLS. Patients taking the first dose of anti-inflammatory/antipyretic therapy in the peri-injection period (within 1 hour) experienced a reduced FLS severity. In conclusion, the study of IL-6 -174 G>C polymorphism would allow the identification of patients lacking the C nucleotide on both alleles who are at risk of a more severe FLS, and may be addressed to a timely and stronger anti-inflammatory/antipyretic therapy for a more effective FLS prevention.
Collapse
Affiliation(s)
- Diego Bertoli
- CREA, Diagnostics Department, Spedali Civili of Brescia, Brescia, Italy
| | - Federico Serana
- CREA, Diagnostics Department, Spedali Civili of Brescia, Brescia, Italy
| | | | - Cinzia Cordioli
- Multiple Sclerosis Center, Spedali Civili of Brescia, Presidio di Montichiari, Brescia, Italy
| | - Davide Maimone
- Department of Neurology, Garibaldi Hospital, Catania, Italy
| | - Maria Pia Amato
- Department of Neurology, University of Florence–Careggi Hospital, Florence, Italy
| | - Diego Centonze
- Department of Neurosciences Tor Vergata University, S. Lucia Foundation IRCCS, Rome, Italy
| | - Ciro Florio
- Department of Neurology, Ospedale Caldarelli, Napoli, Italy
| | - Elisa Puma
- Biogen Italy, Medical Department, Milan, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, Spedali Civili of Brescia, Presidio di Montichiari, Brescia, Italy
| | - Luisa Imberti
- CREA, Diagnostics Department, Spedali Civili of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
13
|
Efficacy of fish oil on serum of TNF α , IL-1 β , and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:709493. [PMID: 23861993 PMCID: PMC3703725 DOI: 10.1155/2013/709493] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/08/2013] [Indexed: 02/05/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease, which leads to focal plaques of demyelination and tissue injury in the central nervous system. Oxidative stress is also thought to promote tissue damage in multiple sclerosis. Current research findings suggest that omega-3 polyunsaturated fatty acids (PUFAs) such as eicosapenta-enoic acid (EPA) and docosahexaenoic acid (DHA) contained in fish oil may have anti-inflammatory, antioxidant, and neuroprotective effects. The aim of the present work was to evaluate the efficacy of fish oil supplementation on serum proinflammatory cytokine levels, oxidative stress markers, and disease progression in MS. 50 patients with relapsing-remitting MS were enrolled. The experimental group received orally 4 g/day of fish oil for 12 months. The primary outcome was serum TNFα levels; secondary outcomes were IL-1β 1b, IL-6, nitric oxide catabolites, lipoperoxides, progression on the expanded disability status scale (EDSS), and annualized relapses rate (ARR). Fish oil treatment decreased the serum levels of TNFα, IL-1β, IL-6, and nitric oxide metabolites compared with placebo group (P ≤ 0.001). There was no significant difference in serum lipoperoxide levels during the study. No differences in EDSS and ARR were found. Conclusion. Fish oil supplementation is highly effective in reducing the levels of cytokines and nitric oxide catabolites in patients with relapsing-remitting MS.
Collapse
|