1
|
Kartanou C, Mitrousias A, Pellerin D, Kontogeorgiou Z, Iruzubieta P, Dicaire MJ, Danzi MC, Koniari C, Athanassopoulos K, Panas M, Stefanis L, Zuchner S, Brais B, Houlden H, Karadima G, Koutsis G. The FGF14 GAA repeat expansion in Greek patients with late-onset cerebellar ataxia and an overview of the SCA27B phenotype across populations. Clin Genet 2024; 105:446-452. [PMID: 38221848 DOI: 10.1111/cge.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
A pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients. The age at onset of SCA27B patients was 60.5 ± 12.3 years (range, 34-80). Episodic onset (37%), downbeat nystagmus (32%) and vertigo (26%) were significantly more frequent in FGF14 expansion-positive cases compared to expansion-negative cases. Beyond typical cerebellar signs, SCA27B patients often displayed hyperreflexia (47%) and reduced vibration sense in the lower extremities (42%). The frequency and phenotypic profile of SCA27B in Greek patients was similar to most other previously studied populations. We conclude that FGF14 GAA repeat expansions are the commonest known genetic cause of LOCA in the Greek population and recommend prioritizing testing for FGF14 expansions in the diagnostic algorithm of patients with LOCA.
Collapse
Affiliation(s)
- Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Alexandros Mitrousias
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Zoi Kontogeorgiou
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Pablo Iruzubieta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
- Department of Neurology, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain
- CIBERNED Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), Madrid, Spain
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chrysoula Koniari
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Konstantinos Athanassopoulos
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology London and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginitio Hospital, Athens, Greece
| |
Collapse
|
2
|
Screening for the FMR1 premutation in Greek patients with late-onset movement disorders. Parkinsonism Relat Disord 2023; 107:105253. [PMID: 36549234 DOI: 10.1016/j.parkreldis.2022.105253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset, X-linked, neurodegenerative disorder that affects premutation carriers of the FMR1 gene. FXTAS is often misdiagnosed as spinocerebellar ataxia (SCA) or Parkinson's disease (PD). Herein, we sought to investigate the frequency, genotypic and phenotypic profile of FXTAS in two cohorts of Greek patients with late-onset movement disorders, one with cerebellar ataxia and the other with PD. In total, 90 index patients with late-onset cerebellar ataxia and 171 with PD were selected. None of the cases had male-to-male transmission. Genetic screening for the FMR1 premutation was performed using standard methodology. The FMR1 premutation was detected in two ataxia patients (2.2%) and two PD patients (1.2%). Additional clinical features in FXTAS patients from the ataxia cohort included neuropathy, mild parkinsonism, cognitive impairment and pyramidal signs. The FXTAS patients from the PD cohort had typical PD. We conclude that, in the Greek population, the FMR1 premutation is an important, albeit rare, cause of late-onset movement disorders. Routine premutation screening should be considered in SCA panel-negative late-onset ataxia cases. Directed premutation screening should be considered in all ataxia and PD cases with additional features suggestive of FXTAS. Our study highlights the importance of FMR1 genetic testing in the diagnosis of late-onset movement disorders.
Collapse
|
3
|
Cornejo-Olivas M, Inca-Martinez M, Castilhos RM, Furtado GV, Mattos EP, Bampi GB, Leistner-Segal S, Marca V, Mazzetti P, Saraiva-Pereira ML, Jardim LB. Genetic Analysis of Hereditary Ataxias in Peru Identifies SCA10 Families with Incomplete Penetrance. THE CEREBELLUM 2020; 19:208-215. [PMID: 31900855 DOI: 10.1007/s12311-019-01098-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Relative frequency of hereditary ataxias remains unknown in many regions of Latin America. We described the relative frequency in spinocerebellar ataxias (SCA) due to (CAG)n and to (ATTCT)n expansions, as well as Friedreich ataxia (FRDA), among cases series of ataxic individuals from Peru. Among ataxic index cases from 104 families (38 of them with and 66 without autosomal dominant pattern of inheritance), we identified 22 SCA10, 8 SCA2, 3 SCA6, 2 SCA3, 2 SCA7, 1 SCA1, and 9 FRDA cases (or families). SCA10 was by far the most frequent one. Findings in SCA10 and FRDA families were of note. Affected genitors were not detected in 7 out of 22 SCA10 nuclear families; then overall maximal penetrance of SCA10 was estimated as 85%; in multiplex families, penetrance was 94%. Two out of nine FRDA cases carried only one allele with a GAA expansion. SCA10 was the most frequent hereditary ataxia in Peru. Our data suggested that ATTCT expansions at ATXN10 might not be fully penetrant and/or instability between generations might frequently cross the limits between non-penetrant and penetrant lengths. A unique distribution of inherited ataxias in Peru requires specific screening panels, considering SCA10 as first line of local diagnosis guidelines.
Collapse
Affiliation(s)
- Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancash St, Barrios Altos, 15003, Lima, Peru. .,Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Miguel Inca-Martinez
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancash St, Barrios Altos, 15003, Lima, Peru.,Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Raphael Machado Castilhos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel Vasata Furtado
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Preusser Mattos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giovana Bavia Bampi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Sandra Leistner-Segal
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victoria Marca
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancash St, Barrios Altos, 15003, Lima, Peru
| | - Pilar Mazzetti
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancash St, Barrios Altos, 15003, Lima, Peru
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
| | | |
Collapse
|
5
|
From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17. Case Rep Neurol Med 2014; 2014:643289. [PMID: 25349749 PMCID: PMC4202309 DOI: 10.1155/2014/643289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022] Open
Abstract
Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family.
Collapse
|