1
|
Terracina S, Ferraguti G, Tarani L, Fanfarillo F, Tirassa P, Ralli M, Iannella G, Polimeni A, Lucarelli M, Greco A, Fiore M. Nerve Growth Factor and Autoimmune Diseases. Curr Issues Mol Biol 2023; 45:8950-8973. [PMID: 37998739 PMCID: PMC10670231 DOI: 10.3390/cimb45110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
NGF plays a crucial immunomodulatory role and increased levels are found in numerous tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules function and which cells they interact with, future studies can devise targeted therapies to address various neurological, immunological, and other disorders more effectively. This knowledge may pave the way for innovative treatments based on NGF manipulation aimed at improving the quality of life for individuals affected by diseases involving neurotrophins.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Giannicola Iannella
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
3
|
Kania K, Ambrosius W, Kozubski W, Kalinowska-Łyszczarz A. The impact of disease modifying therapies on cognitive functions typically impaired in multiple sclerosis patients: a clinician's review. Front Neurol 2023; 14:1222574. [PMID: 37503514 PMCID: PMC10368887 DOI: 10.3389/fneur.2023.1222574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Objective Over the last few decades clinicians have become aware that cognitive impairment might be a major cause of disability, loss of employment and poor quality of life in patients suffering from multiple sclerosis [MS].The impact of disease modifying therapies [DMTs] on cognition is still a matter of debate. Theoretically, DMTs could exert a substantial beneficial effect by means of reducing neuroinflammation and brain atrophy, which are established correlates of cognitive dysfunction. The aim of the study was to review the evidence concerning the effect of DMTs on cognitive functions. Methods PubMed, Scopus, and the European Committee for Treatment and Research in Multiple Sclerosis [ECTRIMS] Library were searched for articles concerning the pediatric and adult populations of patients with multiple sclerosis, including clinical trials and RWD, where psychometric results were analyzed as secondary or exploratory endpoints. Results We reviewed a total of 44 studies that were found by our search strategy, analyzed the psychological tests that were applied, the length of the follow-up, and possible limitations. We pointed out the difficulties associated with assessing of DMTs' effects on cognitive functions, and pitfalls in cognitive tools used for evaluating of MS patients. Conclusion There is a need to highlight this aspect of MS therapies, and to collect adequate data to make informed therapeutic decisions, to improve our understanding of MS-related cognitive dysfunction and provide new therapeutic targets.
Collapse
Affiliation(s)
- Karolina Kania
- Department of Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wojciech Ambrosius
- Department of Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Alicja Kalinowska-Łyszczarz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
4
|
Rademacher TD, Meuth SG, Wiendl H, Johnen A, Landmeyer NC. Molecular biomarkers and cognitive impairment in multiple sclerosis: State of the field, limitations, and future direction - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 146:105035. [PMID: 36608917 DOI: 10.1016/j.neubiorev.2023.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is associated with cognitive impairment (CI) such as slowed information processing speed (IPS). Currently, no immunocellular or molecular markers have been established in cerebrospinal fluid and serum analysis as surrogate biomarkers with diagnostic or predictive value for the development of CI. This systematic review and meta-analysis aims to sum up the evidence regarding currently discussed markers for CI in MS. METHODS A literature search was conducted on molecular biomarkers of CI in MS, such as neurofilament light chain, chitinases, and vitamin D. RESULTS 5543 publications were screened, of which 77 entered the systematic review. 13 studies were included in the meta-analysis. Neurofilament light chain (CSF: rp = -0.294, p = 0.003; serum: rp = -0.137, p = 0.001) and serum levels of vitamin D (rp = 0.190, p = 0.014) were associated with IPS outcomes. CONCLUSIONS Neurofilament light chain and vitamin D are promising biomarkers to track impairments in IPS in MS. Further longitudinal research is needed to establish the use of molecular biomarkers to monitor cognitive decline.
Collapse
Affiliation(s)
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Germany
| | - Andreas Johnen
- Department of Neurology, University Hospital Münster, Germany
| | | |
Collapse
|
5
|
Stojanović NM, Randjelović PJ, Pavlović D, Stojiljković NI, Jovanović I, Sokolović D, Radulović NS. An Impact of Psychological Stress on the Interplay between Salivary Oxidative Stress and the Classic Psychological Stress-Related Parameters. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635310. [PMID: 33505584 PMCID: PMC7808825 DOI: 10.1155/2021/6635310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/29/2020] [Accepted: 12/20/2020] [Indexed: 11/18/2022]
Abstract
Both oxidative and psychological (mental) stress are the likely culprits for several acute and chronic health disturbances, and adequate tests mimicking that are needed. Herein, in controlled laboratory surroundings, a PEBL (Psychology Experiment Building Language) test battery was used to evoke stress-related biological responses followed by tracking changes in saliva parameters. The study objectives were to determine the impact of psychological stress on selected salivatory parameters and to assess the correlation between the determined oxidative and stress parameters. The study was conducted on 36 healthy young subjects, mainly females (n = 24). Before and following the completion of a battery of four PEBL tests, subjects' saliva samples were collected. Stress-evoking changes in total antioxidant capacity and nitrite/nitrate levels, as oxidative stress parameters, and cortisol and immunoglobulin A (IgA), as parameters of psychological stress, were established and mutually correlated by comparing the values of the evaluated parameters pre- and post-PEBL test. The results showed that there is no change in the total salivary antioxidant capacity (p > 0.05); however, there was a significant increase in nitrites/nitrates levels after the PEBL test (p = 0.007). On the other hand, the determined cortisol levels after the test battery were found to be statistically significantly increased (p = 0.025) when compared to the values obtained before the test, while the levels of IgA were found to be statistically significantly decreased (p < 0.001). The only statistically significant correlation between the changes in the studied parameters was found to be the one between cortisol and IgA levels (Spearman's Rö = -0.4). These results suggest that the short-term stress induced by the PEBL test does evoke changes in the salivary mental stress-related parameters (an increase in cortisol and nitrite/nitrate levels, and a decrease in IgA), but not in the total antioxidant capacity. They also indicate that the constructed PEBL four-test battery might represent an adequate laboratory stress-inducing paradigm.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, Zorana Đinđića, 81 Niš, Serbia
| | - Pavle J. Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, Zorana Đinđića, 81 Niš, Serbia
| | - Dragana Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Zorana Đinđića, 81 Niš, Serbia
| | - Nenad I. Stojiljković
- Department of Physiology, Faculty of Medicine, University of Niš, Zorana Đinđića, 81 Niš, Serbia
| | - Ivan Jovanović
- Department of Anatomy, Faculty of Medicine, University of Niš, Zorana Đinđića, 81 Niš, Serbia
| | - Dušan Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Zorana Đinđića, 81 Niš, Serbia
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska, 33 Niš, Serbia
| |
Collapse
|
6
|
Kalinowska-Łyszczarz A, Pawlak MA, Wyciszkiewicz A, Osztynowicz K, Kozubski W, Michalak S. Immune-cell BDNF expression in treatment-naïve relapsing-remitting multiple sclerosis patients and following one year of immunomodulation therapy. Neurol Neurochir Pol 2018; 52:483-489. [PMID: 29643001 DOI: 10.1016/j.pjnns.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
Although neurons are the main source of neurotrophins in the healthy brain, neurotrophins can also be expressed in the immune system. We have previously shown that in relapsing-remitting multiple sclerosis (RRMS) lower immune-cell neurotrophin levels are associated with brain atrophy and cognitive impairment. The aim of the present study was to assess if immune-cell neurotrophin expression is impaired in MS as compared with the healthy controls, and to describe if these levels change in treatment-naïve RRMS patients, following one year of immunomodulation. Fifty treatment-naïve RRMS patients were assessed at baseline and after one year of immunomodulation (beta-interferons/glatiramer acetate). The control group included 39 healthy subjects matched according to age and gender. Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized blood using Ficoll-Histopaque gradient. The levels of brain-derived-neurotrophic-factor (BDNF), beta-nerve-growth-factor (beta-NGF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) were measured in PBMC lysates with ELISA. BDNF levels were significantly lower in MS than in the healthy controls (median 613 vs. 1657pg/mg protein, p<0.001). After one year of immunomodulation, BDNF expression did not change significantly (p=0.06) on the group level. In 70% of patients there was no increase in BDNF level, and in 30% it increased. We observed no differences between treatment groups. Other neurotrophins were detected in a minority of MS samples (as opposed to the controls). To conclude, we have shown that immune-cell production of neurotrophins is impaired in MS patients. In our MS cohort standard immunomodulation failed to restore normal BDNF levels in PBMCs within one year of therapy.
Collapse
Affiliation(s)
- Alicja Kalinowska-Łyszczarz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Mikołaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznan University of Medical Sciences, 34 Dojazd Street, 60-631 Poznan, Poland.
| | - Aleksandra Wyciszkiewicz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Krystyna Osztynowicz
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| | - Sławomir Michalak
- Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), 49 Przybyszewskiego Street, 60-355 Poznan, Poland.
| |
Collapse
|
7
|
Kalinowska-Łyszczarz A, Pawlak MA, Pietrzak A, Pawlak-Buś K, Leszczyński P, Puszczewicz M, Majewski D, Paprzycki W, Kozubski W, Michalak S. Subcortical gray matter atrophy is associated with cognitive deficit in multiple sclerosis but not in systemic lupus erythematosus patients. Lupus 2017; 27:610-620. [PMID: 28992796 DOI: 10.1177/0961203317735186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cognitive impairment is a significant clinical problem both in multiple sclerosis (MS) and systemic lupus erythematosus (SLE) patients. In MS cognitive dysfunction has been associated with brain atrophy and total demyelinating lesion volume. In SLE cognitive impairment is much less understood, and its link to structural brain damage remains to be established. The aim of this study was to identify the relationship between subcortical gray matter volume and cognitive impairment in MS and SLE. We recruited 37 MS and 38 SLE patients matched by age, disease duration and educational level. Patients underwent magnetic resonance imaging (MRI) and a battery of psychometric tests. Severity of cognitive impairment was similar in both cohorts despite larger white matter lesion load in MS patients. Psychometric scores were associated with global and subcortical gray matter atrophy measures and lesion load in MS, but not in SLE. In SLE, the lack of a relationship between cognitive impairment and structural damage, defined either as atrophy or white matter lesions, indicates a different causal mechanism of cognitive deficit.
Collapse
Affiliation(s)
- A Kalinowska-Łyszczarz
- 1 Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), Poznan, Poland
| | - M A Pawlak
- 2 Department of Neurology and Cerebrovascular Disorders, PUMS, Poznan, Poland
| | - A Pietrzak
- 3 Department of Neurology, PUMS, Poznan, Poland
| | - K Pawlak-Buś
- 4 Department of Rheumatology and Rehabilitation, PUMS, Poznan, Poland
| | - P Leszczyński
- 4 Department of Rheumatology and Rehabilitation, PUMS, Poznan, Poland
| | - M Puszczewicz
- 5 Department of Rheumatology and Internal Diseases, PUMS, Poznan, Poland
| | - D Majewski
- 5 Department of Rheumatology and Internal Diseases, PUMS, Poznan, Poland
| | - W Paprzycki
- 6 Department of Neuroradiology, PUMS, Poznan, Poland
| | - W Kozubski
- 3 Department of Neurology, PUMS, Poznan, Poland
| | - S Michalak
- 1 Division of Neurochemistry and Neuropathology, Department of Neurology, Poznan University of Medical Sciences (PUMS), Poznan, Poland
| |
Collapse
|
8
|
The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. J Neurosci Methods 2013; 222:250-9. [PMID: 24269254 DOI: 10.1016/j.jneumeth.2013.10.024] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND We briefly describe the Psychology Experiment Building Language (PEBL), an open source software system for designing and running psychological experiments. NEW METHOD We describe the PEBL Test Battery, a set of approximately 70 behavioral tests which can be freely used, shared, and modified. Included is a comprehensive set of past research upon which tests in the battery are based. RESULTS We report the results of benchmark tests that establish the timing precision of PEBL. COMPARISON WITH EXISTING METHOD We consider alternatives to the PEBL system and battery tests. CONCLUSIONS We conclude with a discussion of the ethical factors involved in the open source testing movement.
Collapse
|
9
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) with unknown etiology. It was recently suggested that autoimmunity, which had long been considered to be destructive in MS, might also play a protective role in the CNS of MS patients. Neurotrophins are polypeptides belonging to the neurotrophic factor family. While neurotrophins mediate cell survival and proliferation in the nervous system, they are also expressed within peripheral blood mononuclear cells fraction (PBMCs) of immunological system. In MS additional neurotrophic support from PBMCs might compensate relative neurotrophins deficiency in the damaged CNS tissue that needs to be repaired. Failure to produce the adequate neurotrophins concentrations might result in decreased protection of the CNS, consequently leading to increased atrophy, which is the main determinant of MS patients' end-point disability. There are several lines of evidence, both from clinical research and animal models, suggesting that neurotrophins play a pivotal role in neuroprotective and neuroregenerative processes that are often defective in the course of MS. It seems that neuroprotective strategies might be used as potentially valuable add-on therapies, alongside traditional immunomodulatory treatment in multiple sclerosis.
Collapse
|